Multi-point array flexible tooling based on multilateration is widely used in the processing and manufacturing of complex curved surface parts. However, during the positioning of workpieces, the force exerted on each ...Multi-point array flexible tooling based on multilateration is widely used in the processing and manufacturing of complex curved surface parts. However, during the positioning of workpieces, the force exerted on each flexible support point is not uniform, and there exists force coupling between the support units. In response to the force coupling problem in the multi-point array positioning support process, a coordinated control method for the support force of multi-point array positioning combining correlation coefficient and regression analysis was proposed in this paper. The Spearman correlation coefficient was adopted in this method to study the force coupling correlation between positioning points, and a mathematical model of force coupling was established between positioning units through regression analysis, which can quickly and accurately perform coordinated control of the multilateration support system, and effectively improve the force interference of the multi-point array positioning support scene.展开更多
Robots are finding increasing application in aircraft composite structure assembly due to their flexibility and the growing demand of aircraft manufacturers for high production rates.The contact force of the composite...Robots are finding increasing application in aircraft composite structure assembly due to their flexibility and the growing demand of aircraft manufacturers for high production rates.The contact force of the composite frame in a robotic assembly of the aircraft composite fuselage panel can hardly be controlled due to the multi-surface variable contact stiffness caused by compliance and complex shape with multiple mating surfaces.The paper proposes a robotic assembly system for the aircraft composite fuselage frame with a compliant contact force control strategy using the Gaussian process surrogate model.First,a robotic assembly system is introduced,and the global coordinate system transformation model is built.Then,a compliant force control architecture is designed to generate the desired output force.Subsequently,a Gaussian process surrogate model with uncertainties is utilized to model the complicated relationship between the robot’s output force and the normal contact force acting on the mating surface of the composite frame.Furthermore,an optimal contact force control strategy is implemented to improve the contact quality.Finally,an experiment demonstrates that the proposed methodology can ensure that the contact force on each surface is within the limit of the engineering specification and uniformly distributed,improving the quality compared to the traditional assembly process.展开更多
The accurate measurement of surfaces of large aviation components is vital for the assessment of manufacturing and assembly quality of such components.To satisfy the measurement requirement of large-size components,mo...The accurate measurement of surfaces of large aviation components is vital for the assessment of manufacturing and assembly quality of such components.To satisfy the measurement requirement of large-size components,most current researches pay more attention to combined measurement methods utilizing different measuring instruments,but the related researches on error analysis and optimization methods are not taken enough attention.This paper proposes a combined laser-assisted measurement method with feature enhancement techniques,and it also develops an error propagation model of the main factors affecting the overall measurement error in detail.Firstly,the surface of a large-size component is measured by the measurement system at multiple stations.Secondly,a control point coordinate system is established as a bridge to unify all local measurement data into the global coordinate system.To improve the overall measurement accuracy,the pixel extraction error as a key factor causing the overall measurement error is analyzed in detail.Next,the error propagation model is established,and some optimization strategies of layout for minimizing measurement error and transformation error are researched.Finally,experiments are carried out to verify the effectiveness of the proposed method.The results show that the measurement error of the proposed method reaches 0.073%and 0.14%with a 1 D standard ruler and a flat plate,respectively.展开更多
This study proposed a force and shape collaborative control method that combined method of influence coefficients(MIC)and the elitist nondominated sorting genetic algorithm(NSGA-II)to reduce the shape deviation caused...This study proposed a force and shape collaborative control method that combined method of influence coefficients(MIC)and the elitist nondominated sorting genetic algorithm(NSGA-II)to reduce the shape deviation caused by manufacturing errors,gravity deformation,and fixturing errors and improve the shape accuracy of the assembled large composite fuselage panel.This study used a multi-point flexible assembly system driven by hexapod parallel robots.The proposed method simultaneously considers the shape deviation and assembly load of the panel.First,a multi-point flexible assembly system driven by hexapod parallel robots was introduced,with the relevant variables defined in the control process.In addition,the corresponding mathematical model was constructed.Subsequently,MIC was used to establish the prediction models between the displacements of actuators and displacements of panel shape control points,deformation loads applied by the actuators.Following the modeling,the shape deviation of the panel and the assembly load were used as the optimization objectives,and the displacements of actuators were optimized using NSGA-II.Finally,a typical composite fuselage panel case study was considered to demonstrate the effectiveness of the proposed method.展开更多
基金Sponsored by the Program of Shanghai Academic/Technology Research Leader (Grant No. 21XD1431200)。
文摘Multi-point array flexible tooling based on multilateration is widely used in the processing and manufacturing of complex curved surface parts. However, during the positioning of workpieces, the force exerted on each flexible support point is not uniform, and there exists force coupling between the support units. In response to the force coupling problem in the multi-point array positioning support process, a coordinated control method for the support force of multi-point array positioning combining correlation coefficient and regression analysis was proposed in this paper. The Spearman correlation coefficient was adopted in this method to study the force coupling correlation between positioning points, and a mathematical model of force coupling was established between positioning units through regression analysis, which can quickly and accurately perform coordinated control of the multilateration support system, and effectively improve the force interference of the multi-point array positioning support scene.
基金This study was supported by the Aeronautical Manufacturing Technology Institute,COMAC.
文摘Robots are finding increasing application in aircraft composite structure assembly due to their flexibility and the growing demand of aircraft manufacturers for high production rates.The contact force of the composite frame in a robotic assembly of the aircraft composite fuselage panel can hardly be controlled due to the multi-surface variable contact stiffness caused by compliance and complex shape with multiple mating surfaces.The paper proposes a robotic assembly system for the aircraft composite fuselage frame with a compliant contact force control strategy using the Gaussian process surrogate model.First,a robotic assembly system is introduced,and the global coordinate system transformation model is built.Then,a compliant force control architecture is designed to generate the desired output force.Subsequently,a Gaussian process surrogate model with uncertainties is utilized to model the complicated relationship between the robot’s output force and the normal contact force acting on the mating surface of the composite frame.Furthermore,an optimal contact force control strategy is implemented to improve the contact quality.Finally,an experiment demonstrates that the proposed methodology can ensure that the contact force on each surface is within the limit of the engineering specification and uniformly distributed,improving the quality compared to the traditional assembly process.
基金co-supported by the National Key Research and Development Project of China(No.2018YFA0703304)the High-level Personnel Innovation Support Program of Dalian(No.2017RJ04)+2 种基金Youth Program of National Natural Science Foundation of China(No.51905077)Liaoning Revitalization Talents Program(No.XLYC1807086)China Postdoctoral Science Foundation Grand(No.2019M651110)。
文摘The accurate measurement of surfaces of large aviation components is vital for the assessment of manufacturing and assembly quality of such components.To satisfy the measurement requirement of large-size components,most current researches pay more attention to combined measurement methods utilizing different measuring instruments,but the related researches on error analysis and optimization methods are not taken enough attention.This paper proposes a combined laser-assisted measurement method with feature enhancement techniques,and it also develops an error propagation model of the main factors affecting the overall measurement error in detail.Firstly,the surface of a large-size component is measured by the measurement system at multiple stations.Secondly,a control point coordinate system is established as a bridge to unify all local measurement data into the global coordinate system.To improve the overall measurement accuracy,the pixel extraction error as a key factor causing the overall measurement error is analyzed in detail.Next,the error propagation model is established,and some optimization strategies of layout for minimizing measurement error and transformation error are researched.Finally,experiments are carried out to verify the effectiveness of the proposed method.The results show that the measurement error of the proposed method reaches 0.073%and 0.14%with a 1 D standard ruler and a flat plate,respectively.
基金supported by National Natural Science Foundation of China(No.52105502)Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing(Nos.COMAC-SFGS-2019-263 and COMAC-SFGS-2019-3731)the Fundamental Research Funds for the Central Universities(No.3042021601).
文摘This study proposed a force and shape collaborative control method that combined method of influence coefficients(MIC)and the elitist nondominated sorting genetic algorithm(NSGA-II)to reduce the shape deviation caused by manufacturing errors,gravity deformation,and fixturing errors and improve the shape accuracy of the assembled large composite fuselage panel.This study used a multi-point flexible assembly system driven by hexapod parallel robots.The proposed method simultaneously considers the shape deviation and assembly load of the panel.First,a multi-point flexible assembly system driven by hexapod parallel robots was introduced,with the relevant variables defined in the control process.In addition,the corresponding mathematical model was constructed.Subsequently,MIC was used to establish the prediction models between the displacements of actuators and displacements of panel shape control points,deformation loads applied by the actuators.Following the modeling,the shape deviation of the panel and the assembly load were used as the optimization objectives,and the displacements of actuators were optimized using NSGA-II.Finally,a typical composite fuselage panel case study was considered to demonstrate the effectiveness of the proposed method.