We have inquired into a means to decrease the number of charged particles escaping from a loss cone of a magnetic mirror reactor as many as possible. We previously reported the way of installing a supplemental magneti...We have inquired into a means to decrease the number of charged particles escaping from a loss cone of a magnetic mirror reactor as many as possible. We previously reported the way of installing a supplemental magnetic mirror (which has a cyclotron heating space within) at the exit of a main magnetic bottle. The cyclotron heating space was set to increase a reflection-efficiency of the supplemental mirror. We could not suppress the loss of the escaping deuteron ions sufficiently even with a very long mirror and a very powerful electric field. Then, in this work we propose a new plan of installing another supplemental mirror besides the previous supplemental mirror. A new mirror is set perpendicularly to the center axis of the main bottle. By the addition of the perpendicular mirror, an efficiency of sending back of escaping deuteron ions is considerably theoretically improved. Also in the previous work, since we did not touch how to supply a high-frequency electric field to the cyclotron heating space, here we consider supplying it by an extraordinary-wave with a cyclotron frequency. It is mentioned that propagation of an extraordinary-wave with an electron cyclotron frequency depends on a magnetic field strength and density of escaping electrons.展开更多
We reported previously the idea to improve reflection-ability of a magnetic mirror by installing a cyclotron resonance space in the front part of the mirror. However, since the previous analysis was insufficient from ...We reported previously the idea to improve reflection-ability of a magnetic mirror by installing a cyclotron resonance space in the front part of the mirror. However, since the previous analysis was insufficient from the examination after that, we complement the following two things in this work: 1) A simpler procedure of design to make a supplemental magnetic mirror with the simplest magnetic configuration, compared with the procedure reported previously. 2) A peculiar characteristic arising only in reflection of a nonrelativistic charged particle (a deuteron ion).展开更多
Research on magnetic mirror reactors has had two serious problems since the beginning stage. One is the magnetohydrodynamic instability due to the negative curvature of the magnetic field lines around the center regio...Research on magnetic mirror reactors has had two serious problems since the beginning stage. One is the magnetohydrodynamic instability due to the negative curvature of the magnetic field lines around the center region of a mirror bottle. Another is the loss of charged particles escaping from the loss cone of a magnetic mirror. We have continued to inquire into a means to solve the latter problem. We here propose a new way which will be able to make a magnitude of a loss angle of a magnetic mirror for deuterons virtually zero.展开更多
We discuss an electron transport in an ideal plasma which consists of electrons and deuterons. With respect to a frictional force to suppress an unlimited increase of a drift velocity, the Boltzmann equation with the ...We discuss an electron transport in an ideal plasma which consists of electrons and deuterons. With respect to a frictional force to suppress an unlimited increase of a drift velocity, the Boltzmann equation with the Fokker-Planck collision term takes into consideration only a dynamical frictional force coming from the many-body collisions through the Coulomb force. However, we here bring forward a problem that there may be another frictional force besides the dynamical frictional force. Another frictional force was found in the weakly ionized plasma and appears only in the case where free paths (nearly straight lines in no external force field) can be defined. Then, we have inquired into the existence of physical quantities like free paths (or free times) in the field of the scattering through the Coulomb force and the existence of an effective radius of the Coulomb force of a deuteron.展开更多
文摘We have inquired into a means to decrease the number of charged particles escaping from a loss cone of a magnetic mirror reactor as many as possible. We previously reported the way of installing a supplemental magnetic mirror (which has a cyclotron heating space within) at the exit of a main magnetic bottle. The cyclotron heating space was set to increase a reflection-efficiency of the supplemental mirror. We could not suppress the loss of the escaping deuteron ions sufficiently even with a very long mirror and a very powerful electric field. Then, in this work we propose a new plan of installing another supplemental mirror besides the previous supplemental mirror. A new mirror is set perpendicularly to the center axis of the main bottle. By the addition of the perpendicular mirror, an efficiency of sending back of escaping deuteron ions is considerably theoretically improved. Also in the previous work, since we did not touch how to supply a high-frequency electric field to the cyclotron heating space, here we consider supplying it by an extraordinary-wave with a cyclotron frequency. It is mentioned that propagation of an extraordinary-wave with an electron cyclotron frequency depends on a magnetic field strength and density of escaping electrons.
文摘We reported previously the idea to improve reflection-ability of a magnetic mirror by installing a cyclotron resonance space in the front part of the mirror. However, since the previous analysis was insufficient from the examination after that, we complement the following two things in this work: 1) A simpler procedure of design to make a supplemental magnetic mirror with the simplest magnetic configuration, compared with the procedure reported previously. 2) A peculiar characteristic arising only in reflection of a nonrelativistic charged particle (a deuteron ion).
文摘Research on magnetic mirror reactors has had two serious problems since the beginning stage. One is the magnetohydrodynamic instability due to the negative curvature of the magnetic field lines around the center region of a mirror bottle. Another is the loss of charged particles escaping from the loss cone of a magnetic mirror. We have continued to inquire into a means to solve the latter problem. We here propose a new way which will be able to make a magnitude of a loss angle of a magnetic mirror for deuterons virtually zero.
文摘We discuss an electron transport in an ideal plasma which consists of electrons and deuterons. With respect to a frictional force to suppress an unlimited increase of a drift velocity, the Boltzmann equation with the Fokker-Planck collision term takes into consideration only a dynamical frictional force coming from the many-body collisions through the Coulomb force. However, we here bring forward a problem that there may be another frictional force besides the dynamical frictional force. Another frictional force was found in the weakly ionized plasma and appears only in the case where free paths (nearly straight lines in no external force field) can be defined. Then, we have inquired into the existence of physical quantities like free paths (or free times) in the field of the scattering through the Coulomb force and the existence of an effective radius of the Coulomb force of a deuteron.