Germinal centers (GC) of secondary lymphoid tissues are critical to mounting a high-affinity humoral immune response. B cells within the GC undergo rapid clonal expansion and selection while diversifying their antib...Germinal centers (GC) of secondary lymphoid tissues are critical to mounting a high-affinity humoral immune response. B cells within the GC undergo rapid clonal expansion and selection while diversifying their antibody genes. Although it is generally believed that GC B cells employ a unique proliferative program to accommodate these processes, little is known about how the GC-associated cell cycle is orchestrated. The D-type cyclins constitute an important component of the cell cycle engine that enables the cells to respond to physiological changes. Cell type- and developmental stage-specific roles of D-type cyclins have been described but the cyclin D requirement during GC reaction has not been addressed. In this study, we report that cyclin D3 is largely dispensable for proliferation and Ig class switching of in vitro activated B cells. In contrast, GC development in Ccnd3^-/- mice is markedly impaired, as is the T cell-dependent antibody response. Within the GC, although both switched and unswitched B cells are affected by cyclin D3 inactivation, the IgM^- pool is more severely reduced. Interestingly, despite a compensatory increase in cyclln D2 expression, a significant number of Ccnd3^-/- GC B cells accumulate in quiescent GO state. Lastly, although cyclin D3 inactivation did not disrupt BCL6 expression in GC B cells, it completely blocked the GC promoting effect of BCL6 overexpression, suggesting that cyclin D3 acts downstream of BCL6 to regulate GC formation. This is the first demonstration that cyclin D3 plays an important and unique role at the GC stage of B cell development.展开更多
Research into the suppressive activity of CD4+FoxP3+ T regulatory cells (Treg) has defined a sublineage of CD4+ cells that contribute to self-tolerance and resistance to autoimmune disease. Much less attention ha...Research into the suppressive activity of CD4+FoxP3+ T regulatory cells (Treg) has defined a sublineage of CD4+ cells that contribute to self-tolerance and resistance to autoimmune disease. Much less attention has been given to the potential contribution of regulatory sublineages of CD8+ cells. Analysis of a small fraction of CD8+ cells that target autoreactive CD4+ cells through recognition of the MHC class Ib molecule Qa-1 in mouse and HLA-E in human has revitalized interest in CD8+ Treg. Here we summarize recent progress and future directions of research into the role of this CD8+ sublineage in resistance to autoimmune disease. Cellular & Molecular Immunology. 2008; 5(6):401-406.展开更多
文摘Germinal centers (GC) of secondary lymphoid tissues are critical to mounting a high-affinity humoral immune response. B cells within the GC undergo rapid clonal expansion and selection while diversifying their antibody genes. Although it is generally believed that GC B cells employ a unique proliferative program to accommodate these processes, little is known about how the GC-associated cell cycle is orchestrated. The D-type cyclins constitute an important component of the cell cycle engine that enables the cells to respond to physiological changes. Cell type- and developmental stage-specific roles of D-type cyclins have been described but the cyclin D requirement during GC reaction has not been addressed. In this study, we report that cyclin D3 is largely dispensable for proliferation and Ig class switching of in vitro activated B cells. In contrast, GC development in Ccnd3^-/- mice is markedly impaired, as is the T cell-dependent antibody response. Within the GC, although both switched and unswitched B cells are affected by cyclin D3 inactivation, the IgM^- pool is more severely reduced. Interestingly, despite a compensatory increase in cyclln D2 expression, a significant number of Ccnd3^-/- GC B cells accumulate in quiescent GO state. Lastly, although cyclin D3 inactivation did not disrupt BCL6 expression in GC B cells, it completely blocked the GC promoting effect of BCL6 overexpression, suggesting that cyclin D3 acts downstream of BCL6 to regulate GC formation. This is the first demonstration that cyclin D3 plays an important and unique role at the GC stage of B cell development.
基金supported in part by research grants from the NIH (AI037562)National Multiple Sclerosis Society and a gift from the Schecter Family Research Foundation to HC LL is a Claudia Adams Barr Investigator and NIH NRSA Fellow (T32 AI07386)
文摘Research into the suppressive activity of CD4+FoxP3+ T regulatory cells (Treg) has defined a sublineage of CD4+ cells that contribute to self-tolerance and resistance to autoimmune disease. Much less attention has been given to the potential contribution of regulatory sublineages of CD8+ cells. Analysis of a small fraction of CD8+ cells that target autoreactive CD4+ cells through recognition of the MHC class Ib molecule Qa-1 in mouse and HLA-E in human has revitalized interest in CD8+ Treg. Here we summarize recent progress and future directions of research into the role of this CD8+ sublineage in resistance to autoimmune disease. Cellular & Molecular Immunology. 2008; 5(6):401-406.