期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effects of ketogenic diet and ketone bodies on the cardiovascular system:Concentration matters 被引量:4
1
作者 Souad Nasser Varvara Vialichka +2 位作者 Marta Biesiekierska Aneta Balcerczyk Luciano Pirola 《World Journal of Diabetes》 SCIE 2020年第12期584-595,共12页
Ketone bodies have emerged as central mediators of metabolic health,and multiple beneficial effects of a ketogenic diet,impacting metabolism,neuronal pathologies and,to a certain extent,tumorigenesis,have been reporte... Ketone bodies have emerged as central mediators of metabolic health,and multiple beneficial effects of a ketogenic diet,impacting metabolism,neuronal pathologies and,to a certain extent,tumorigenesis,have been reported both in animal models and clinical research.Ketone bodies,endogenously produced by the liver,act pleiotropically as metabolic intermediates,signaling molecules,and epigenetic modifiers.The endothelium and the vascular system are central regulators of the organism’s metabolic state and become dysfunctional in cardiovascular disease,atherosclerosis,and diabetic micro-and macrovascular complications.As physiological circulating ketone bodies can attain millimolar concentrations,the endothelium is the first-line cell lineage exposed to them.While in diabetic ketoacidosis high ketone body concentrations are detrimental to the vasculature,recent research revealed that ketone bodies in the low millimolar range may exert beneficial effects on endothelial cell(EC)functioning by modulating the EC inflammatory status,senescence,and metabolism.Here,we review the long-held evidence of detrimental cardiovascular effects of ketoacidosis as well as the more recent evidence for a positive impact of ketone bodies—at lower concentrations—on the ECs metabolism and vascular physiology and the subjacent cellular and molecular mechanisms.We also explore arising controversies in the field and discuss the importance of ketone body concentrations in relation to their effects.At low concentration,endogenously produced ketone bodies upon uptake of a ketogenic diet or supplemented ketone bodies(or their precursors)may prove beneficial to ameliorate endothelial function and,consequently,pathologies in which endothelial damage occurs. 展开更多
关键词 Endothelial cells Ketone bodies Vascular physiology β-Hydroxybutyrate β-Hydroxybutyrylation Histone post-translational modifications
下载PDF
Endocrine disrupting chemicals in mixture and obesity,diabetes and related metabolic disorders 被引量:5
2
作者 Brigitte Le Magueresse-Battistoni Emmanuel Labaronne +1 位作者 Hubert Vidal Danielle Naville 《World Journal of Biological Chemistry》 2017年第2期108-119,共12页
Obesity and associated metabolic disorders represent a major societal challenge in health and quality of life with large psychological consequences in addition to physical disabilities. They are also one of the leadin... Obesity and associated metabolic disorders represent a major societal challenge in health and quality of life with large psychological consequences in addition to physical disabilities. They are also one of the leading causes of morbidity and mortality. Although, different etiologic factors including excessive food intake and reduced physical activity have been well identified, they cannot explain the kinetics of epidemic evolution of obesity and diabetes with prevalence rates reaching pandemic proportions. Interestingly, convincing data have shown that environmental pollutants, specifically those endowed with endocrine disrupting activities, could contribute to the etiology of these multifactorial metabolic disorders. Within this review, we will recapitulate characteristics of endocrine disruption. We will demonstrate that metabolic disorders could originate from endocrine disruption with a particular focus on convincing data from the literature. Eventually, we will present how handling an original mouse model of chronic exposition to a mixture of pollutants allowed demonstrating that a mixture of pollutants each at doses beyond their active dose could induce substantial deleterious effects on several metabolic end-points. This proof-of-concept study, as well as other studies on mixtures of pollutants, stresses the needs for revisiting the current threshold model used in risk assessment which does not take into account potential effects of mixtures containing pollutants at environmental doses, e.g., the real life exposure. Certainly, more studies are necessary to better determine the nature of the chemicals to which humans are exposed and at which level, and their health impact. As well, research studies on substitute products are essential to identify harmless molecules. 展开更多
关键词 Endocrine disrupting chemicals Persistent organic pollutants PHTHALATES Bisphenol A Metabolic disorders Insulin resistance
下载PDF
Essential roles of four-carbon backbone chemicals in the control of metabolism
3
作者 Sabrina Chriett Luciano Pirola 《World Journal of Biological Chemistry》 CAS 2015年第3期223-230,共8页
The increasing incidence of obesity worldwide and its related cardiometabolic complications is an urgent public health problem. While weight gain results from a negative balance between the energy expenditure and calo... The increasing incidence of obesity worldwide and its related cardiometabolic complications is an urgent public health problem. While weight gain results from a negative balance between the energy expenditure and calorie intake, recent research has demonstrated that several small organic molecules containing a four-carbon backbone can modulate this balance by favoring energy expenditure, and alleviating endoplasmic reticulum stress and oxidative stress. Such small molecules include the bacterially produced short chain fatty acid butyric acid, its chemically produced derivative 4-phenylbutyric acid, the main ketone body D-β-hydroxybutyrate- synthesized by the liver- and the recently discovered myokine β-aminoisobutyric acid. Conversely, another butyraterelated molecule, α-hydroxybutyrate, has been found to be an early predictor of insulin resistance and glucose intolerance. In this minireview, we summarize recent advances in the understanding of the mechanism of action of these molecules, and discuss their use as therapeutics to improve metabolic homeostasis or their detection as early biomarkers of incipient insulin resistance. 展开更多
关键词 Butyric acid Dβ-hydroxybutyrate HISTONE DEACETYLASES HISTONE DEACETYLASES INHIBITORS INSULIN resistance
下载PDF
Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver 被引量:4
4
作者 Pierre Theurey Emily Tubbs +7 位作者 Guillaume Vial Julien Jacquemetton Nadia Bendridi Marie-Agnes Chauvin Muhammad Rizwan Alam Muriel Le Romancer Hubert Vidal Jennifer Rieusset 《Journal of Molecular Cell Biology》 SCIE CAS CSCD 2016年第2期129-143,共15页
Mitochondria-associated endoplasmic reticulum membranes(MAM)play a key role in mitochondrial dynamics and function and in hepatic insulin action.Whereas mitochondria are important regulators of energy metabolism,the n... Mitochondria-associated endoplasmic reticulum membranes(MAM)play a key role in mitochondrial dynamics and function and in hepatic insulin action.Whereas mitochondria are important regulators of energy metabolism,the nutritional regulation of MAM in the liver and its role in the adaptation of mitochondria physiology to nutrient availability are unknown.In this study,we found that the fasted to postprandial transition reduced the number of endoplasmic reticulum-mitochondria contact points in mouse liver.Screening of potential hormonal/metabolic signals revealed glucose as the main nutritional regulator of hepatic MAM integrity both in vitro and in vivo.Glucose reduced organelle interactions through the pentose phosphate-protein phosphatase 2A(PP-PP2A)pathway,induced mitochondria fission,and impaired respiration.Blocking MAM reduction counteracted glucose-induced mitochondrial alterations.Furthermore,disruption of MAM integrity mimicked effects of glucose on mitochondria dynamics and function.This glucose-sensing system is deficient in the liver of insulin-resistant ob/ob and cyclophilin D-KO mice,both characterized by chronic disruption of MAM integrity,mitochondrial fission,and altered mitochondrial respiration.These data indicate that MAM contribute to the hepatic glucose-sensing system,allowing regulation of mitochondria dynamics and function during nutritional transition.Chronic disruption of MAM may participate in hepatic mitochondrial dysfunction associated with insulin resistance. 展开更多
关键词 MAM mitochondria dynamics HEPATOCYTES glucose sensing pentose phosphate pathway PP2A
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部