期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effect of particle micro-structure on the electrochemical properties of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode material 被引量:1
1
作者 Zexun Tang Hongqi Ye +1 位作者 Xin Ma Kai Han 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第8期1618-1626,共9页
Ni-rich layered material is a kind of high-capacity cathode to meet the requirement of electric vehicles.As for the typical LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) material,the particle formation is significant for electroche... Ni-rich layered material is a kind of high-capacity cathode to meet the requirement of electric vehicles.As for the typical LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) material,the particle formation is significant for electrochemical properties of the cathode.In this work,the structure,morphology,and electrochemical performance of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) secondary particles and single crystals were systematically studied.A lower Ni^(2+)/Ni^(3+)molar ratio of 0.66 and a lower residual alkali content of 0.228wt%were achieved on the surface of the single crystals.In addition,the single crystals showed a discharge capacity of 191.6 mAh/g at 0.2 C(~12 mAh/g lower than that of the secondary particles)and enhanced the electrochemical stability,especially when cycled at 50℃ and in a wider electrochemical window(between 3.0 and 4.4 V vs.Li+/Li).The LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) secondary particles were suitable for applications requiring high specific capacity,whereas single crystals exhibited better stability,indicating that they are more suitable for use in long life requested devices. 展开更多
关键词 Ni-rich layered materials single crystal CATHODE MICRO-STRUCTURE lithium-ion battery
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部