期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Tailoring minimalist self-assembling peptides for localized viral vector aene deliverv
1
作者 Alexandra L. Rodriguez Ting-Yi Wang +4 位作者 Kiara F. Bruggeman Rui Li Richard J. Williams Clare L. Parish David R. Nisbet 《Nano Research》 SCIE EI CAS CSCD 2016年第3期674-684,共11页
Viral vector gene delivery is a promising technique for the therapeutic administra- tion of proteins to damaged tissue for the improvement of regeneration outcomes in various disease settings including brain and spina... Viral vector gene delivery is a promising technique for the therapeutic administra- tion of proteins to damaged tissue for the improvement of regeneration outcomes in various disease settings including brain and spinal cord injury, as well as autoimmune diseases. Though promising results have been demonstrated, limitations of viral vectors, including spread of the virus to distant sites, neutralization by the host immune system, and low transduction efficiencies have stimulated the investigation of biomaterials as gene delivery vehicles for improved protein expression at an injury site. Here, we show how N- fluorenylmethyloxycarbonyl (Fmoc) self-assembling peptide (SAP) hydrogels, designed for tissue-specific central nervous system (CNS) applications via incorporation of the laminin peptide sequence isoleucine-lysine-valine-alanine- valine (IKVAV), are effective as biocompatible, localized viral vector gene delivery vehicles in vivo. Through the addition of a C-terminal lysine (K) residue, we show that increased electrostatic interactions, provided by the additional amine side chain, allow effective immobilization of lentiviral vector particles, thereby limiting their activity exclusively to the site of injection and enabling focal gene delivery in vivo in a tissue-specific manner. When the C-terminal lysine was absent, no difference was observed between the number of transfected cells, the volume of tissue transfected, or the transfection efficiency with and without the Fmoc-SAP. Importantly, immobilization of the virus only affected transfection cell number and volume, with no impact observed on transfection efficiency. This hydrogel allows the sustained and targeted delivery of growth factors post injury. We have established Fmoc-SAPs as a versatile platform for enhanced biomaterial design for a range of tissue engineering applications. 展开更多
关键词 viral vectors gene therapy self-assembling peptides BIOMATERIALS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部