It is found that ultrathin poly(3-hexylthiophene) (P3HT) film with a 2.5 nm-thick layer exhibits a higher mobility of 5.0× 10-2 cm2/V-s than its bulk counterpart. The crystalline structure of the as-fabricate...It is found that ultrathin poly(3-hexylthiophene) (P3HT) film with a 2.5 nm-thick layer exhibits a higher mobility of 5.0× 10-2 cm2/V-s than its bulk counterpart. The crystalline structure of the as-fabricated ultrathin P3HT layer is verified by atomic force microscopy as well as grazing incidence X-ray diffraction. Transient measurements of the as-fabricated transistors reveal the influence of the interface traps on charge transport. These results are explained by the trap energy level distribution at the interface manipulated by layers of polymer film.展开更多
基金Project supported by the Special Funds for the Development of Strategic Emerging Industries in Shenzhen City,China(Grant No.JCYJ20120830154526537)the Start-up Funding of South University of Science and Technology of Chinathe Strategic Research Grant of City University of Hong Kong of China(Grant No.7002724)
文摘It is found that ultrathin poly(3-hexylthiophene) (P3HT) film with a 2.5 nm-thick layer exhibits a higher mobility of 5.0× 10-2 cm2/V-s than its bulk counterpart. The crystalline structure of the as-fabricated ultrathin P3HT layer is verified by atomic force microscopy as well as grazing incidence X-ray diffraction. Transient measurements of the as-fabricated transistors reveal the influence of the interface traps on charge transport. These results are explained by the trap energy level distribution at the interface manipulated by layers of polymer film.