期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effect of 1Al addition on deformation behavior of Mg 被引量:7
1
作者 Ji Hyun Hwang A.Zargaran +3 位作者 Gyeongbae Park O.Lee B.-J.Lee Nack J.Kim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第2期489-498,共10页
Deformation behavior of 1 Al containing Mg alloy has been investigated in the present study.After annealing,the Mg-1 Al alloy shows a typical basal texture.When compared to the pure Mg having a similar texture and gra... Deformation behavior of 1 Al containing Mg alloy has been investigated in the present study.After annealing,the Mg-1 Al alloy shows a typical basal texture.When compared to the pure Mg having a similar texture and grain size,the Mg-1 Al alloy shows much higher strength and larger elongation.Slip trace analyses of the tensile strained specimens show that non-basal slips such as pyramidal I and II slips can be easily activated at an early stage of deformation in the Mg-1 Al alloy and the grains in the Mg-1 Al alloy are seen to accommodate a larger degree of deformation than those in the pure Mg at a given strain.With increasing tensile strain,however,there is a strain localization along the initially formed slip lines of non-basal slips,forming surface steps without activating multiple slip lines. 展开更多
关键词 Deformation behavior Slip trace analysis Non-basal slip Strain localization DUCTILITY
下载PDF
Strip Casting of High Performance Structural Alloys
2
作者 S S Park J G Lee Nack J Kim 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第z2期78-84,共7页
There exists a great need for the development of high performance alloys due to increasing demands for energy conservation and environmental protection. Application of strip casting shows a strong potential for the im... There exists a great need for the development of high performance alloys due to increasing demands for energy conservation and environmental protection. Application of strip casting shows a strong potential for the improvement of properties of existing alloys and also for the development of novel alloy systems with superior properties. The present paper reviews our Center's activities in the development of high performance alloys by strip casting. Examples include (1) Al alloys, (2) wrought Mg alloys, and (3) bulk metallic glass (BMG) alloys. 展开更多
关键词 STRIP CASTING 6061 Al ALLOY AZ Mg ALLOY bulk metallic glass (BMG) ALLOY dispersion HARDENING
下载PDF
Effects of Cu addition on formability and surface delamination phenomenon in high-strength high-Mn steels 被引量:1
3
作者 Min Chul Jo Jisung Yoo +4 位作者 Min Cheol Jo Alireza Zargaran Seok Su Sohn Nack J.Kim Sunghak Lee 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第8期44-51,共8页
The formability of austenitic high-Mn steels is a critical issue in automotive applications under nonuniformly-deformed environments caused by dynamic strain aging.Among austenite stabilizing alloying elements in thos... The formability of austenitic high-Mn steels is a critical issue in automotive applications under nonuniformly-deformed environments caused by dynamic strain aging.Among austenite stabilizing alloying elements in those steels,Cu has been known as an effective element to enhance tensile properties via controlling the stacking fault energy and stability of austenite.The effects of Cu addition on formability,however,have not been sufficiently reported yet.In this study,the Cu addition effects on formability and surface characteristics in the austenitic high-Mn TRIP steels were analyzed in consideration of inhomogeneous microstructures containing the segregation of Mn and Cu.To reveal determining factors,various mechanical parameters such as total elongation,post elongation,strain hardening rate,normal anisotropy,and planar anisotropy were correlated to the hole-expansion and cup-drawing test results.With respect to microstructural parameters,roles of(Mn,Cu)-segregation bands and resultant Cu-rich FCC precipitates on the formability and surface delamination were also discussed. 展开更多
关键词 High-Mn steel Cu effects Cu-rich FCC phase Hole-expansion test FORMABILITY Stretch-flangeablity Surface delamination
原文传递
Enhancement of ballistic performance enabled by transformation-induced plasticity in high-strength bainitic steel
4
作者 Min Cheoljo Selim Kim +4 位作者 Dong Woo Suh Hong Kyu Kim Yongjin Kim Seok Su Sohn Sunghak Lee 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第25期219-229,共11页
High-strength bainitic steels have created a lot of interest in recent times because of their excellent combination of strength,ductility,toughness,and high ballistic mass efficiency.Bainitic steels have great potenti... High-strength bainitic steels have created a lot of interest in recent times because of their excellent combination of strength,ductility,toughness,and high ballistic mass efficiency.Bainitic steels have great potential in the fabrication of steel armor plates.Although various approaches and methods have been conducted to utilize the retained austenite(RA)in the bainitic matrix to control mechanical properties,very few attempts have been conducted to improve ballistic performance utilizing transformationinduced plasticity(TRIP)mechanism.In this study,high-strength bainitic steels were designed by controlling the time of austempering process to have various volume fractions and stability of RA while maintaining high hardness.The dynamic compressive and ballistic impact tests were conducted,and the relation between the effects of TRIP on ballistic performance and the adiabatic shear band(ASB)formation was analyzed.Our results show for the first time that an active TRIP mechanism achieved from a large quantity of metastable RA can significantly enhance the ballistic performance of high-strength bainitic steels because of the improved resistance to ASB formation.Thus,the ballistic performance can be effectively improved by a very short austempering time,which suggests that the utilization of active TRIP behavior via tuning RA acts as a primary mechanism for significantly enhancing the ballistic performance of high-strength bainitic steels. 展开更多
关键词 High-strength bainitic steel Ballistic performance Split Hopkinson pressure bar(SHPB) Adiabatic shear band(ASB) Retained austenite(RA) Transformation-induced plasticity(TRIP)
原文传递
Effects of Craddition on Charpy impact energy in austenitic 0.45C-24Mn-(0,3,6)Cr steels 被引量:1
5
作者 Seok Gyu Lee Bohee Kim +6 位作者 Min Cheol Jo Kyeong-Min Kim Junghoon Lee Jinho Bae Byeong-Joo Lee Seok Su Sohn Sunghak Lee 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第15期21-30,共10页
Effects of Cr addition(0,3,and 6 wt%) on Charpy impact properties of Fe-C-Mn-Cr-based steels were studied by conducting dynamic compression tests at room and cryogenic temperatures.At room temperature,deformation mech... Effects of Cr addition(0,3,and 6 wt%) on Charpy impact properties of Fe-C-Mn-Cr-based steels were studied by conducting dynamic compression tests at room and cryogenic temperatures.At room temperature,deformation mechanisms of Charpy impacted specimens were observed as twinning induced plasticity(TWIP) without any transfo rmation induced plasticity(TRIP) in all the steels.At cryogenic temperature,many twins were populated in the Cr-added steels,but,interestingly,fine ε-martensite was found in the OCr steel,satisfying the Shoji-Nishiyama(S-N) orientation relationship,{111}γ//{0002}ε and <101>γ//<1120>ε.Even though the cryogenic-temperature staking fault energies(SFEs) of the three steel were situated in the TWIP regime,the martensitic transformation was induced by Mn-and Cr-segregated bands.In the OCr steel,SFEs of low-(Mn,Cr) bands lay between the TWIP and TRIP regimes which were sensitively affected by a small change of SFE.The dynamic compressive test results well showed the relation between segregation bands and the SFEs.Effects of Cr were known as not only increasing the SFE but also promoting the carbide precipitation.In order to identify the possibility of carbide formation,a precipitation kinetics simulation was conducted,and the predicted fractions of precipitated M23C6 were negligible,0.4-1.1×10-5,even at the low cooling rate of 10℃/s. 展开更多
关键词 Austenitic high-Mn steels Charpy impact energy Split Hopkinson pressure bar Twinning induced plasticity(TWIP) Transformation induced plasticity(TRIP) Stacking fault energy(SFE)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部