期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging 被引量:3
1
作者 Tao Zheng Xiaobing Hu +9 位作者 Feng He Qjngfeng Wu Bin Han Chen Da Junjie Li Zhijun Wang Jincheng Wang Ji-jung Kai Zhenhai Xia C.T.Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第10期156-167,共12页
The multi-principal-component concept of high-entropy alloys(HEAs) generates numerous new alloys.Among them,nanoscale precipitated HEAs have achieved superior mechanical properties and shown the potentials for structu... The multi-principal-component concept of high-entropy alloys(HEAs) generates numerous new alloys.Among them,nanoscale precipitated HEAs have achieved superior mechanical properties and shown the potentials for structural applications.However,it is still a great challe nge to find the optimal alloy within the numerous candidates.Up to now,the reported nanoprecipitated HEAs are mainly designed by a trialand-error approach with the aid of phase diagram calculations,limiting the development of structural HEAs.In the current work,a novel method is proposed to accelerate the development of ultra-strong nanoprecipitated HEAs.With the guidance of physical metallurgy,the volume fraction of the required nanoprecipitates is designed from a machine learning of big data with thermodynamic foundation while the morphology of precipitates is kinetically tailored by prestrain aging.As a proof-of-principle study,an HEA with superior strength and ductility has been designed and systematically investigated.The newly developed γ’-strengthened HEA exhibits 1.31 GPa yield strength,1.65 GPa ultimate tensile strength,and 15% tensile elongation.Atom probe tomography and transmission electron microscope characterizations reveal the well-controlled high γ’ volume fraction(52%) and refined precipitate size(19 nm).The refinement of nanoprecipitates originates from the accelerated nucleation of the γ’ phase by prestrain aging.A deeper understanding of the excellent mechanical properties is illustrated from the aspect of strengthening mecha nisms.Finally,the versatility of the current design strategy to other precipitation-hardened alloys is discussed. 展开更多
关键词 High-entropy alloys Machine learning Prestrain aging Mechanical properties Strengthening mechanisms
原文传递
Recently advances in flexible zinc ion batteries
2
作者 Chuan Li Pei Li +1 位作者 Shuo Yang Chunyi Zhi 《Journal of Semiconductors》 EI CAS CSCD 2021年第10期84-92,共9页
Flexible batteries are key component of wearable electronic devices.Based on the requirements of medical and primary safety of wearable energy storage devices,rechargeable aqueous zinc ion batteries(ZIBs)are promising... Flexible batteries are key component of wearable electronic devices.Based on the requirements of medical and primary safety of wearable energy storage devices,rechargeable aqueous zinc ion batteries(ZIBs)are promising portable candidates in virtue of its intrinsic safety,abundant storage and low cost.However,many inherent challenges have greatly hindered the development in flexible Zn-based energy storage devices,such as rigid current collector and/or metal anode,easily detached cathode materials and a relatively narrow voltage window of flexible electrolyte.Thus,overcoming these challenges and further developing flexible ZIBs are inevitable and imperative.This review summarizes the most advanced progress in designs and discusses of flexible electrode,electrolyte and the practical application of flexible ZIBs in different environments.We also exhibit the heart of the matter that current flexible ZIBs faces.Finally,some prospective approaches are proposed to address these key issues and point out the direction for the future development of flexible ZIBs. 展开更多
关键词 flexible electrodes flexible electrolytes wearable zinc batteries
下载PDF
Simultaneously improving mechanical properties and oxidation resistance of Ti-bearing high-entropy superalloys at intermediate temperature via silicon addition
3
作者 Shaofei Liu Weicheng Xiao +9 位作者 Bo Xiao Jiang Ju Yinghao Zhou Yilu Zhao Zengbao Jiao Junhua Luan Qian Li Jinxiong Hou Ji-jung Kai Tao Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第26期30-41,共12页
Ti-bearing high-entropy superalloys(HESAs)often suffer from severe intergranular embrittlement and terrible oxidation degradation at intermediate temperatures.Here we showcase that minor Si addition can effectively mi... Ti-bearing high-entropy superalloys(HESAs)often suffer from severe intergranular embrittlement and terrible oxidation degradation at intermediate temperatures.Here we showcase that minor Si addition can effectively mitigate the intergranular embrittlement and improve the oxidation resistance of the a(Ni_(2)Co_(2)FeCr)_(92) Ti_(4)Al_(4) HESA at 700℃ simultaneously.Experimental analysis revealed that the intergranu-lar G phase induced by 2 at%Si addition can effectively suppress the inward diffusion of oxygen along grain boundaries at 700℃,thus enhancing the tensile ductility of the alloy from∼8.3%to∼13.4%.Be-sides,the 2 at%Si addition facilitated the formation of a continuous Al_(2)O_(3) layer during oxidation,con-tributing to a remarkable reduction in the growth rate of the oxide scale to a quarter of the Si-free HESA.Our results demonstrate that Si can be a favorable alloying element to design advanced HESAs with syn-ergistically improved thermal-mechanical performance. 展开更多
关键词 High-entropy superalloy Mechanical property Oxidation behavior Intermediate temperature Silicon addition
原文传递
Off-stoichiometry-guided design of high-strength chemically complex intermetallic-based alloys with outstanding ductility
4
作者 Bo Xiao Jixun Zhang +4 位作者 Shaofei Liu Yilu Zhao Lianyong Xu C.T.Liu Tao Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第29期28-33,共6页
1.Introduction The lasting drive for improved energy efficiency in power gen-eration encourages the innovative design of advanced structural materials with superb mechanical properties[1-6].Among these materials,order... 1.Introduction The lasting drive for improved energy efficiency in power gen-eration encourages the innovative design of advanced structural materials with superb mechanical properties[1-6].Among these materials,ordered intermetallic alloys[7-9],as a unique class of metallic materials,have drawn increasing concern from both the scientific and industrial communities due to their intriguing high-temperature properties,strong chemical binding,and low atomic mobility[10,11].However,in light of the insufficient number of slip systems and/or intrinsically weak grain boundary(GB),they are usually brittle at ambient temperature,severely hindering their practical use in engineering systems[12].Previous studies reported that the change in alloy stoichiometry has a significant beneficial effect on the ductility of intermetallic alloys.For instance,Liu et al. 展开更多
关键词 INTERMETALLIC DUCTILITY ALLOYS
原文传递
高密度金属间化合物纳米颗粒强化型单晶高熵超合金的高温氧化行为
5
作者 肖维城 鞠江 +5 位作者 刘少飞 肖博 周英豪 开执中 赵怡潞 杨涛 《Science China Materials》 SCIE EI CAS CSCD 2023年第11期4239-4250,共12页
本文系统研究了单晶L_(12)强化富Co高熵超合金Co_(41)Ni_(35)Al_(11.5)-Ta_(2.5)Cr_(4)Ti_(6)(at%)在空气中800,900和1000℃下的氧化行为.结果表明,该合金在800至1000℃范围内均表现出优异的抗氧化性.其中,在800℃氧化后,合金表面形成... 本文系统研究了单晶L_(12)强化富Co高熵超合金Co_(41)Ni_(35)Al_(11.5)-Ta_(2.5)Cr_(4)Ti_(6)(at%)在空气中800,900和1000℃下的氧化行为.结果表明,该合金在800至1000℃范围内均表现出优异的抗氧化性.其中,在800℃氧化后,合金表面形成了双层氧化膜,由TiO_(2)/Al_(2)O_(3)混合层和Cr_(2)O_(3)层组成.连续但不致密的Cr_(2)O_(3)层不能有效抑制内部氧化和内部氮化.在900和1000℃时形成复杂的分级结构氧化膜,主要成分为尖晶石、Cr_(2)O_(3)、TiTaO_(4)和Al_(2)O_(3).值得注意的是,在900至1000℃的温度范围内发现抗氧化性出现了反常提高.具体来说,在1000℃下形成的更复杂和连续的五层氧化层,特别是底部的连续致密的Al_(2)O_(3)层,赋予合金在1000℃下优异的抗氧化性. 展开更多
关键词 high-entropy superalloy high-temperature oxidation FIB-TEM oxide scale oxidation diffusion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部