期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Frame Invariance and Scalability of Neural Operators for Partial Differential Equations
1
作者 Muhammad I.Zafar Jiequn Han +1 位作者 Xu-Hui Zhou Heng Xiao 《Communications in Computational Physics》 SCIE 2022年第7期336-363,共28页
Partial differential equations(PDEs)play a dominant role in themathematicalmodeling ofmany complex dynamical processes.Solving these PDEs often requires prohibitively high computational costs,especially when multiple ... Partial differential equations(PDEs)play a dominant role in themathematicalmodeling ofmany complex dynamical processes.Solving these PDEs often requires prohibitively high computational costs,especially when multiple evaluations must be made for different parameters or conditions.After training,neural operators can provide PDEs solutions significantly faster than traditional PDE solvers.In this work,invariance properties and computational complexity of two neural operators are examined for transport PDE of a scalar quantity.Neural operator based on graph kernel network(GKN)operates on graph-structured data to incorporate nonlocal dependencies.Here we propose a modified formulation of GKN to achieve frame invariance.Vector cloud neural network(VCNN)is an alternate neural operator with embedded frame invariance which operates on point cloud data.GKN-based neural operator demonstrates slightly better predictive performance compared to VCNN.However,GKN requires an excessively high computational cost that increases quadratically with the increasing number of discretized objects as compared to a linear increase for VCNN. 展开更多
关键词 Neural operators graph neural networks constitutive modeling inverse modeling deep learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部