Transition metal dichalcogenides(TMDs)and perovskites are among the most attractive and widely investigated semiconductors in the recent decade.They are promising materials for various applications,such as photodetect...Transition metal dichalcogenides(TMDs)and perovskites are among the most attractive and widely investigated semiconductors in the recent decade.They are promising materials for various applications,such as photodetection,solar energy harvesting,light emission,and many others.Combining these materials to form heterostructures can enrich the already fascinating properties and bring up new phenomena and opportunities.Work in this field is growing rapidly in both fundamental studies and device applications.Here,we review the recent findings in the perovskite-TMD heterostructures and give our perspectives on the future development of this promising field.The fundamental properties of the perovskites,TMDs,and their heterostructures are discussed first,followed by a summary of the synthesis methods of the perovskites and TMDs and the approaches to obtain high-quality interfaces.Particular attention is paid to the TMD-perovskite heterostructures that have been applied in solar cells and photodetectors with notable performance improvement.Finally through our analysis,we propose an outline on further fundamental studies and the promising applications of perovskite-TMD heterostructures.展开更多
Photoluminescence(PL) from bulk noble metals arises from the interband transition of bound electrons. Plasmonic nanostructures can greatly enhance the quantum yield of noble metals through the localized surface plas...Photoluminescence(PL) from bulk noble metals arises from the interband transition of bound electrons. Plasmonic nanostructures can greatly enhance the quantum yield of noble metals through the localized surface plasmon. In this work,we briefly review recent progress on the phenomenon, mechanism, and application of one-photon PL from plasmonic nanostructures. Particularly, our recent efforts in the study of the PL peak position, partial depolarization, and mode selection from plasmonic nanostructures can bring about a relatively complete and deep understanding of the physical mechanism of one-photon PL from plasmonic nanostructures, paving the way for future applications in plasmonic imaging,plasmonic nanolasing, and surface enhanced fluorescence spectra.展开更多
基金J.H.Teng acknowledges A*STAR for funding support in Grants A20E5c0084,A2083c0058 and CRF SC25/21-110318.
文摘Transition metal dichalcogenides(TMDs)and perovskites are among the most attractive and widely investigated semiconductors in the recent decade.They are promising materials for various applications,such as photodetection,solar energy harvesting,light emission,and many others.Combining these materials to form heterostructures can enrich the already fascinating properties and bring up new phenomena and opportunities.Work in this field is growing rapidly in both fundamental studies and device applications.Here,we review the recent findings in the perovskite-TMD heterostructures and give our perspectives on the future development of this promising field.The fundamental properties of the perovskites,TMDs,and their heterostructures are discussed first,followed by a summary of the synthesis methods of the perovskites and TMDs and the approaches to obtain high-quality interfaces.Particular attention is paid to the TMD-perovskite heterostructures that have been applied in solar cells and photodetectors with notable performance improvement.Finally through our analysis,we propose an outline on further fundamental studies and the promising applications of perovskite-TMD heterostructures.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61675096 and 61205042)the Natural Science Foundation of Jiangsu Province in China(Grant No.BK20141393)the Singapore Ministry of Education Academic Research Fund Tier 3(Grant No.MOE2011-T3-1-005)and Tier 2(Grant No.MOE2012-T2-2-124)
文摘Photoluminescence(PL) from bulk noble metals arises from the interband transition of bound electrons. Plasmonic nanostructures can greatly enhance the quantum yield of noble metals through the localized surface plasmon. In this work,we briefly review recent progress on the phenomenon, mechanism, and application of one-photon PL from plasmonic nanostructures. Particularly, our recent efforts in the study of the PL peak position, partial depolarization, and mode selection from plasmonic nanostructures can bring about a relatively complete and deep understanding of the physical mechanism of one-photon PL from plasmonic nanostructures, paving the way for future applications in plasmonic imaging,plasmonic nanolasing, and surface enhanced fluorescence spectra.