Combining analytical transmission electron microscopy systematic tilting, scanning transmission electron microscopy mapping and nano-beam electron diffraction operations, we obtain direct experimental proofs on the bo...Combining analytical transmission electron microscopy systematic tilting, scanning transmission electron microscopy mapping and nano-beam electron diffraction operations, we obtain direct experimental proofs on the boundary type, elemental distribution and structure of the cellular reerystallization reaction front for a single- crystal superalloy. It is demonstrated that the cellular recrystallization reaction front usually corresponds to coincidence site lattice boundaries, and a thin layer of γ-forming elements such as Re, Cr, Mo and Co invariably exists in the direct reaction front. Furthermore, the thin layer with γ-forming elements is proved to be γ phase, with the same orientation as the neighboring original matrix.展开更多
La3+ and V5+ co-doped BiFeO3 ceramics are synthesized by rapid liquid sintering technique. The modulated structure in Bi0.85La0.15Fe0.97V0.03O3 is investigated by using transmission electron microscopy (TEM). Two ...La3+ and V5+ co-doped BiFeO3 ceramics are synthesized by rapid liquid sintering technique. The modulated structure in Bi0.85La0.15Fe0.97V0.03O3 is investigated by using transmission electron microscopy (TEM). Two kinds of superstructures are observed in the samples. One is the component modulated superstructure and twin-domain, which is generated by La3+ ordered substitution for Bi3+ and frequently appears. The chemical composition of the superstructure is explored by x-ray energy dispersive spectroscopy (EDS). The model of the ordered structure is proposed. Simulation based on the model is conducted. The second is the fluorite-type δ-Bi2O3 related superstructure. The relation between the ferroelectric property and the microstructure of the sample is also discussed.展开更多
Hetero-element doping is a promising strategy to improve the cycling stability of nickel-rich cobalt-free cathodes for the next-generation high energy-density Li ion batteries.To make doping effective,it is important ...Hetero-element doping is a promising strategy to improve the cycling stability of nickel-rich cobalt-free cathodes for the next-generation high energy-density Li ion batteries.To make doping effective,it is important to understand the mechanism of how the dopants regulate the electronic band,lattice parameter adjusting,or hetero-phase formation to achieve high stability.In this study,we investigate LiNi_(0.9)Mn_(0.1)O_(2)cathodes doped with IVB grouping elements via multiple characterization techniques.By utilizing in situ XRD and TEM methods,we found that the stronger Ti-O bond effectively improves the cathode stability via a dual protection mechanism.Specifically,the bulk lattice of cathode is wellpreserved during cycling as a result of the suppressed H_(2)-H_(3)phase transition,while a in situ formed Ti-rich surface layer can prevent continuous surface degradation.As a result,the 5%Ti doped LiNi_(0.9)Mn_(0.1)O_(2)cathode exhibits a high capacity retention of 96%after 100 cycles.Whereas,despite IVB group elements Zr and Hf have stronger bonding energy with oxygen,their larger ionic radii actually impede their diffusion into the cathode,thereby they can not improve the cycling stability.Our findings uncover the functional origin of doped elements with their dynamic modification on cathode structure,providing mechanistic insights into the design of nickel-rich cobalt-free cathodes.展开更多
Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na...Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na-ion cathodes.Here,we reveal the correlation between cationic ordering transition and OR degradation in ribbon-ordered P3-Na_(0.6)Li_(0.2)Mn_(0.8)O_(2) via in situ structural analysis.Comparing two different voltage windows,the OR capacity can be improved approximately twofold when suppressing the in-plane cationic ordering transition.We find that the intralayer cationic migration is promoted by electrochemical reduction from Mn^(4+)to Jahn–Teller Mn^(3+)and the concomitant NaO_(6) stacking transformation from triangular prisms to octahedra,resulting in the loss of ribbon ordering and electrochemical decay.First-principles calculations reveal that Mn^(4+)/Mn^(3+)charge ordering and alignment of the degenerate eg orbital induce lattice-level collective Jahn–Teller distortion,which favors intralayer Mn-ion migration and thereby accelerates OR degradation.These findings unravel the relationship between in-plane cationic ordering and OR reversibility and highlight the importance of superstructure protection for the rational design of reversible OR-active layered oxide cathodes.展开更多
Phase transitions involving oxygen ion extraction within the framework of the crystallographic relevance have been widely exploited for sake of superconductivity,ferromagnetism,and ion conductivity in perovskiterelate...Phase transitions involving oxygen ion extraction within the framework of the crystallographic relevance have been widely exploited for sake of superconductivity,ferromagnetism,and ion conductivity in perovskiterelated oxides.However,atomic-scale pathways of phase transitions and ion extraction threshold are inadequately understood.Here we investigate the atomic structure evolution of LaCoO_(3) films upon oxygen extraction and subsequent Co migration,focusing on the key role of epitaxial strain.The brownmillerite to Ruddlesden-Popper phase transitions are discovered to stabilize at distinct crystal orientations in compressive-and tensile-strained cobaltites,which could be attributed to in-plane and out-of-plane Ruddlesden-Popper stacking faults,respectively.A two-stage process from exterior to interior phase transition is evidenced in compressive-strained LaCoO_(2.5),while a single-step nucleation process leaving bottom layer unchanged in tensile-strained situation.Strain analyses reveal that the former process is initiated by an expansion in Co layer at boundary,whereas the latter one is associated with an edge dislocation combined with antiphase boundary.These findings provide a chemomechanical perspective on the structure regulation of perovskite oxides and enrich insights into strain-dependent phase diagram in epitaxial oxides films.展开更多
A kind of sandwich-like NiCo_2O_4/rGO/NiO heterostructure composite has been successfully anchored on nickel foam substrate via a three-step hydrothermal method with successive annealing treatment. The smart combinati...A kind of sandwich-like NiCo_2O_4/rGO/NiO heterostructure composite has been successfully anchored on nickel foam substrate via a three-step hydrothermal method with successive annealing treatment. The smart combination of NiCo_2O_4, reduced graphene oxide(rGO), and NiO nanostructure in the sandwich-like nano architecture shows a promising synergistic effect for supercapacitors with greatly enhanced electrochemical performance. For serving as supercapacitor electrode, the NiCo_2O_4/rGO/NiO heterostructure materials exhibit remarkable specific capacitance of 2644 mF cm^(-2)at current density of 1 mA cm^(-2),and excellent capacitance retentions of 97.5% after 3000 cycles. It is expected that the present heterostructure will be a promising electrode material for high-performance supercapacitors.展开更多
The substrate pre-treatment plays a key role in obtaining hollow-cored carbon nanotubes (CNTs) and solid-cored carbon nanofibers (CNFs) from flames. This paper introduces a simply and high-efficient process by coa...The substrate pre-treatment plays a key role in obtaining hollow-cored carbon nanotubes (CNTs) and solid-cored carbon nanofibers (CNFs) from flames. This paper introduces a simply and high-efficient process by coating a NiSO4 or FeSO4 layer on the substrate as catalyst precursors. Comparing with the regular pre-treatment methods, the present experiments showed that the coating pre-treatment provided the following advantages: 1) greatly shortening the synthesis time; 2) available variant substrates and carbon sources; 3) narrowing the diameters distribution. The sulfate is considered to be a crucial factor at the growth of CNTs and CNFs, because it increases the surface energy of catalyst particles and the surface specificity of sulfurs action in metallic grains. This novel process provides a possibility for high quality and mass production of CNTs and CNFs from flames.展开更多
The present work studied the corrosion properties around the fusion boundaries of 2.25Cr-1Mo steel with stainless steel strip overlay joints under as welded condition and after post-weld heat treatment (PWHT) in H2 S ...The present work studied the corrosion properties around the fusion boundaries of 2.25Cr-1Mo steel with stainless steel strip overlay joints under as welded condition and after post-weld heat treatment (PWHT) in H2 S containing solution (NACE TM-01-77 standard) with different time. An in-situ observation method was introduced for evaluating corrosive progress in the fusion boundary in H2 S containing solution, that is, the samples were marked firstly at the boundary and then treated in the solution for variant time. Each time after the corrosion treatment, the observations were kept to focus at the same marked area by using scanning electron microscopy (SEM) to observe the corrosion progress. The results reveal that the fusion boundary is the worst region for corrosion resistance when comparing with other boundaries, and a broad fusion boundary has a stronger resistance for "hydrogen induced disbonding" than a narrow one.展开更多
Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge ...Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and Fe_(x)P particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of Fe_(x)P particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn^(-1),a power density of 92.9 m W cm^(-2) at 137 m A cm^(-2) and an excellent durability were exhibited.展开更多
As the scaling down of semiconductor devices, it would be necessary to discover the structure-property relationship of semiconductor nanomaterials at nanometer scale. In this review, the quantitative characterization ...As the scaling down of semiconductor devices, it would be necessary to discover the structure-property relationship of semiconductor nanomaterials at nanometer scale. In this review, the quantitative characterization technique off-axis electron holography is introduced in details, followed by its applications in various semiconductor nanomaterials including group IV, compound and two-dimensional semiconductor nanostructures in static states as well as under various stimuli. The advantages and disadvantages of off-axis electron holography in material analysis are discussed, the challenges facing in-situ electron holographic study of semiconductor devices at working conditions are presented, and all the possible influencing factors need to be considered to achieve the final goal of fulfilling quantitative characterization of the structure-property relationship of semiconductor devices at their working conditions.展开更多
A method of fabricating Cu nanocrystals embedded in SiO2 dielectric film for nonvolatile memory applications by magnetron sputtering is introduced in this paper. The average size and distribution density of Cu nanocry...A method of fabricating Cu nanocrystals embedded in SiO2 dielectric film for nonvolatile memory applications by magnetron sputtering is introduced in this paper. The average size and distribution density of Cu nanocrystal grains are controlled by adjusting experimental parameters. The relationship between nanocrystal floating gate micro-structure and its charge storage capability is also discussed theoretically.展开更多
Fine-grained Al-Cu-Fe-(B) icosahedral poly-quasicrystals (1QCs) as the main materials and fine-grained Al- Pd-Mn IQCs as the supplements, both prepared by powder metallurgy, are uniaxially deformed at vaNous tempe...Fine-grained Al-Cu-Fe-(B) icosahedral poly-quasicrystals (1QCs) as the main materials and fine-grained Al- Pd-Mn IQCs as the supplements, both prepared by powder metallurgy, are uniaxially deformed at vaNous temperatures and strain rates. The systematic study shows the dependences of curves of the true stress versus true strain on several parameters, such as temperature, strain rate and grain size. For Al-Cu-Fe IQCs with grain sizes of about 10-30μm, QC-specific intra-granular softening drop appears in the deformation curves at lower temperatures and/or faster strain rates, but disappears in those curves at higher temperatures and/or slower strain rates, which suggests that the inter-granular effects such as grain-boundary sliding should be taken into account to interpret the continuous hardening, similarly to conventional poly-crystals. For Al-Cu-Fe-B IQCs with smaller grain sizes of about 1 μm and fine-grained AI-Pd-Mn IQCs with grain sizes of about 10μm, QC- specific intra-granular softening drop is absent for all the deformation curves at the possible lowest temperature and fastest strain rate. This implies that the sma/ler the grain size, the more the inter-granular contribution. At the same time, due to the rapid recovery caused by intense diffusion in small-sized grains, the intra-granular quasicrystal lattice reorders rapidly from disordering, which also inhibits the intra-granular softening drop to some extent.展开更多
Electron magnetic circular dichroism opens a new door to explore magnetic properties by transmitted electrons in the transmission electron microscope. However, obtaining quantitative magnetic parameters, such as spin ...Electron magnetic circular dichroism opens a new door to explore magnetic properties by transmitted electrons in the transmission electron microscope. However, obtaining quantitative magnetic parameters, such as spin and orbital magnetic moment with element-specificity, goes a long way along with the development and improvement of this technique both in theoretical and experimental aspects. In this review, we will give a detailed description of the quantitative electron magnetic circular dichroism(EMCD) technique to measure magnetic parameters with spin-specificity, element-specificity,site-specificity, and orbital-spin-specificity. The discussion completely contains the procedures from raw experimental data acquisition to final magnetic parameters, together with the related custom code we have developed.展开更多
The mineralogy of shock vein matrix in the Suizhou meteorite has been investigated by optical and transmission electron microscopy. It was revealed that the vein matrix is composed of majorite-pyrope garnet, mag- aesi...The mineralogy of shock vein matrix in the Suizhou meteorite has been investigated by optical and transmission electron microscopy. It was revealed that the vein matrix is composed of majorite-pyrope garnet, mag- aesiowtistite, and ringwoodite, with FeNi-FeS inter- growths. The observation and character of ring-like selected electron diffraction (SAED) patterns indicate that Lhe idiomorphic garnet crystals in the vein matrix have different orientations. The polycrystalline nature of magnesiowtistite is also confirmed by a ring-like SAED pattern. Both garnet and magnesiowtistite crystals showed sharp Jiffraction spots, signifying the good crystallinity of these :wo minerals. The SAED pattern of cryptocrystalline 5ngwoodite shows only diffuse concentric diffraction tings. FeNi metal and troilite (FeS), which were molten during the shock event, occur in the matrix as fine eutectic FeNi-FeS intergrowths filling the interstices between garaet and magnesiowiistite grains. Based on the phase dia- gram of the Allende chondrite and the results of this TEM study, it is inferred that majorite-pyrope garnet first crystallized from the Suizhou chondritic melt at 22-26 GPa, Followed by crystallization of magnesiowtistite at 20-24 GPa, and then ringwoodite at 18-20 GPa. The eutectic intergrowths of FeNi-metal and troilite are proposed to have crystallized during meteorite cooling and solidified at the last stage of vein formation.展开更多
Deformation twinning serves as an important mode of plastic dissipation processes in nanoscale body-centered cubic(BCC)metals,but its origin and spatio-temporal features are mysterious.Here,applying in situ tensile ex...Deformation twinning serves as an important mode of plastic dissipation processes in nanoscale body-centered cubic(BCC)metals,but its origin and spatio-temporal features are mysterious.Here,applying in situ tensile experiments,we report a strong size effect on mediating the twinning behaviors and twin boundary(TB)-dislocation interaction mechanisms in BCC iron(Fe)nanowires(NWs).There exists a critical diameter(d)of∼2.5 nm,above which the deformation twinning rather than dislocation slip dominates the plasticity.Unlike the traditional reflection TBs,the intermediate isosceles TBs are consis-tently observed as mediated by the 1/12<111>partial dislocations.Moreover,we uncover two distinct TB-related deformation mechanisms,including twin variant re-orientation and TB cracking for NWs with d<17 nm and d>17 nm,respectively.Further molecular dynamics and statics simulations provide the basic underlying mechanisms for size-dependent plasticity,which have been largely overlooked in previous experimental investigations.Our findings highlight the importance of grain size in mediating the deformation behaviors in Fe,serving as possible guidance for exploring single-crystalline and poly-crystalline Fe-based materials(e.g.steel)with optimized mechanical performance.展开更多
The knowledge regarding anisotropic mechanical behaviors in nanoscale body-centered cubic (bcc) metals remains obscure. Herein, we report the orientation-dependent ductility in bcc Mo nanocrystals (NCs), which exhibit...The knowledge regarding anisotropic mechanical behaviors in nanoscale body-centered cubic (bcc) metals remains obscure. Herein, we report the orientation-dependent ductility in bcc Mo nanocrystals (NCs), which exhibit poor ductility along [110] direction but possess relatively better ductility along the [001] and [112] orientations. The origin of different deformability can be traced down to the distinct deformation mechanisms: the unexpected crack nucleation and propagation induce premature fractures in [110]-oriented NCs;in contrast, deformation twinning could contribute to the enhanced ductility in [001]-oriented NCs;interestingly, we find the activation of multiple dislocation slips in [112]-oriented NCs with the highest ductility. Further molecular dynamics simulations provide deeper insights into the defect dynamics that are closely interlinked with experimental observations. Our findings advance the basic understanding of orientation-dependent mechanical properties and help to guide endeavors to architecture the microstructures of bcc metals with enhanced ductility.展开更多
High-performance active terahertz modulators as the indispensable core components are of great importance for the next generation communication technology.However,they currently suffer from the tradeoff between modula...High-performance active terahertz modulators as the indispensable core components are of great importance for the next generation communication technology.However,they currently suffer from the tradeoff between modulation depth and speed.Here,we introduce two-dimensional(2D)tellurium(Te)nanofilms with the unique structure as a new class of optically controlled terahertz modulators and demonstrate their integrated heterojunctions can successfully improve the device performances to the optimal and applicable levels among the existing all-2D broadband modulators.Further photoresponse measurements confirm the significant impact of the stacking order.We first clarify the direction of the substrate-induced electric field through first-principles calculations and uncover the unusual interaction mechanism in the photoexcited carrier dynamics associated with the charge transfer and interlayer exciton recombination.This advances the fundamental and applicative research of Te nanomaterials in high-performance terahertz optoelectronics.展开更多
Bi_(2)O_(2)Se is highly competitive as a candidate of next-generation high-performance semiconductors.Though dubbed as semiconductor,Bi_(2)O_(2)Se films exhibited high conductance,i.e.,metallic behavior,due to spontan...Bi_(2)O_(2)Se is highly competitive as a candidate of next-generation high-performance semiconductors.Though dubbed as semiconductor,Bi_(2)O_(2)Se films exhibited high conductance,i.e.,metallic behavior,due to spontaneously ionized defects.Semiconducting/insulating films are of practical importance in broad applications based on low-power,high-performance electronics,the existence of which lacks firm evidence.Here,we synthesized highly insulating films in a controlled way,which exhibit semiconducting behavior with channel resistance up to 1 TΩ.The electron chemical potential lies within the band gap,in some cases,even below the charge neutrality level,signifying the trace of hole-type semiconducting.The performance of insulating devices remains high,comparable to high-quality devices previously.Especially,the threshold voltage(Vth)is positive,contrary to common negative values reported.Calculations indicate that our synthesis conditions suppress electron donors(Se vacancies(VSe))and promote the formation of compensating acceptors(Bi vacancies(VBi)),leading to insulating behaviors.Our work offers insights into electron dynamics of Bi_(2)O_(2)Se,moves one step further towards p-type transistors and provides a valuable playground for engineering ferroelectricity in high-performance semiconductors.展开更多
Developing highly active and stable Pt-based nanocatalysts towards the ethanol oxidation reaction(EOR)is still a challenge for the commercialization of direct ethanol fuel cells.Herein,SnO_(2) patched ultrathin PtRhM(...Developing highly active and stable Pt-based nanocatalysts towards the ethanol oxidation reaction(EOR)is still a challenge for the commercialization of direct ethanol fuel cells.Herein,SnO_(2) patched ultrathin PtRhM(M=Ni or Co)nano wires are synthesized by a facile two-step method.展开更多
Using high-resolution transmission Kikuchi diffraction(TKD)and transmission electron microscopy(TEM),we examined the hierarchical clusters that form in situ in the heat-affected zone(HAZ),which are com-monly referred ...Using high-resolution transmission Kikuchi diffraction(TKD)and transmission electron microscopy(TEM),we examined the hierarchical clusters that form in situ in the heat-affected zone(HAZ),which are com-monly referred to as“ghost”structures,of bimodal titanium alloy Ti-5Al-2Sn-2Zr-4Mo-4Cr(wt%,TC17).The ghost structures are enriched with Al elements but poor in Mo and Cr compared to the surroundingβmatrix.TKD results show that the ghost structure in middle-HAZ mainly consists ofα_(L)laths with a high-angle grain boundary,which exhibits the classic Burgers orientation relationship(BOR)with the host matrix,while it encircles theα_(P)grains in far-HAZ.And the ghost structure is evidenced to form via in-complete martensitic transformation.TEM results further confirm that the ghost structure is composed ofαL and tinyβ_(L)laths with BOR,with the former being enriched with Al and poor with Cr and Mo,while the latter is the opposite.Interestingly,twoα_(L)variant clusters with a check-mark morphology are fre-quently observed viewed along[0001]_(αL)//[110]_(βL)directions,which are dominated by the crystallographic and geometrical relationships betweenαandβphases.Based on the microstructural characterization,it is hypothesized that the ghost structure is transformed from the initialα_(P)phase,due to the coupling ef-fect of high thermal stress(which induces the formation of a large number of dislocations)and element diffusion caused by sudden temperature increase and plunge cooling in the HAZ during the welding pro-cess.展开更多
基金Supported by the Scientific Research Foundation of Xi’an University of Technology under Grant No 101-451115007the National Natural Science Foundation of China under Grant No 51174161the Pivot Innovation Team of Shaanxi Electric Materials and Infiltration Technique under Grant No 2012KCT-25
文摘Combining analytical transmission electron microscopy systematic tilting, scanning transmission electron microscopy mapping and nano-beam electron diffraction operations, we obtain direct experimental proofs on the boundary type, elemental distribution and structure of the cellular reerystallization reaction front for a single- crystal superalloy. It is demonstrated that the cellular recrystallization reaction front usually corresponds to coincidence site lattice boundaries, and a thin layer of γ-forming elements such as Re, Cr, Mo and Co invariably exists in the direct reaction front. Furthermore, the thin layer with γ-forming elements is proved to be γ phase, with the same orientation as the neighboring original matrix.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51372174,11074193,and 51132001)the Fundamental Research Funds for the Central Universities
文摘La3+ and V5+ co-doped BiFeO3 ceramics are synthesized by rapid liquid sintering technique. The modulated structure in Bi0.85La0.15Fe0.97V0.03O3 is investigated by using transmission electron microscopy (TEM). Two kinds of superstructures are observed in the samples. One is the component modulated superstructure and twin-domain, which is generated by La3+ ordered substitution for Bi3+ and frequently appears. The chemical composition of the superstructure is explored by x-ray energy dispersive spectroscopy (EDS). The model of the ordered structure is proposed. Simulation based on the model is conducted. The second is the fluorite-type δ-Bi2O3 related superstructure. The relation between the ferroelectric property and the microstructure of the sample is also discussed.
基金the funding support from the National Key Research and Development Program of China(2020YFB2007400)the National Natural Science Foundation of China(22209202,22075317)the Strategic Priority Research Program(B)(XDB33030200)of Chinese Academy of Sciences。
文摘Hetero-element doping is a promising strategy to improve the cycling stability of nickel-rich cobalt-free cathodes for the next-generation high energy-density Li ion batteries.To make doping effective,it is important to understand the mechanism of how the dopants regulate the electronic band,lattice parameter adjusting,or hetero-phase formation to achieve high stability.In this study,we investigate LiNi_(0.9)Mn_(0.1)O_(2)cathodes doped with IVB grouping elements via multiple characterization techniques.By utilizing in situ XRD and TEM methods,we found that the stronger Ti-O bond effectively improves the cathode stability via a dual protection mechanism.Specifically,the bulk lattice of cathode is wellpreserved during cycling as a result of the suppressed H_(2)-H_(3)phase transition,while a in situ formed Ti-rich surface layer can prevent continuous surface degradation.As a result,the 5%Ti doped LiNi_(0.9)Mn_(0.1)O_(2)cathode exhibits a high capacity retention of 96%after 100 cycles.Whereas,despite IVB group elements Zr and Hf have stronger bonding energy with oxygen,their larger ionic radii actually impede their diffusion into the cathode,thereby they can not improve the cycling stability.Our findings uncover the functional origin of doped elements with their dynamic modification on cathode structure,providing mechanistic insights into the design of nickel-rich cobalt-free cathodes.
基金funding supports from the National Key R&D Program of China(Grant Nos.2022YFB2404400 and 2019YFA0308500)Beijing Natural Science Foundation(Z190010)National Natural Science Foundation of China(Grant Nos.51991344,52025025,52072400,and 52002394)。
文摘Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na-ion cathodes.Here,we reveal the correlation between cationic ordering transition and OR degradation in ribbon-ordered P3-Na_(0.6)Li_(0.2)Mn_(0.8)O_(2) via in situ structural analysis.Comparing two different voltage windows,the OR capacity can be improved approximately twofold when suppressing the in-plane cationic ordering transition.We find that the intralayer cationic migration is promoted by electrochemical reduction from Mn^(4+)to Jahn–Teller Mn^(3+)and the concomitant NaO_(6) stacking transformation from triangular prisms to octahedra,resulting in the loss of ribbon ordering and electrochemical decay.First-principles calculations reveal that Mn^(4+)/Mn^(3+)charge ordering and alignment of the degenerate eg orbital induce lattice-level collective Jahn–Teller distortion,which favors intralayer Mn-ion migration and thereby accelerates OR degradation.These findings unravel the relationship between in-plane cationic ordering and OR reversibility and highlight the importance of superstructure protection for the rational design of reversible OR-active layered oxide cathodes.
基金supported by the National Natural Science Foundation of China(Grant Nos.52322212,52072400,52025025,and 52250402)。
文摘Phase transitions involving oxygen ion extraction within the framework of the crystallographic relevance have been widely exploited for sake of superconductivity,ferromagnetism,and ion conductivity in perovskiterelated oxides.However,atomic-scale pathways of phase transitions and ion extraction threshold are inadequately understood.Here we investigate the atomic structure evolution of LaCoO_(3) films upon oxygen extraction and subsequent Co migration,focusing on the key role of epitaxial strain.The brownmillerite to Ruddlesden-Popper phase transitions are discovered to stabilize at distinct crystal orientations in compressive-and tensile-strained cobaltites,which could be attributed to in-plane and out-of-plane Ruddlesden-Popper stacking faults,respectively.A two-stage process from exterior to interior phase transition is evidenced in compressive-strained LaCoO_(2.5),while a single-step nucleation process leaving bottom layer unchanged in tensile-strained situation.Strain analyses reveal that the former process is initiated by an expansion in Co layer at boundary,whereas the latter one is associated with an edge dislocation combined with antiphase boundary.These findings provide a chemomechanical perspective on the structure regulation of perovskite oxides and enrich insights into strain-dependent phase diagram in epitaxial oxides films.
基金supported by the Special Fund for the Development of Strategic Emerging Industries of Shenzhen City of China(No.JCYJ20140419141154246)the National Nature Science Foundation of China(No.11174227)Chinese Universities Scientific Fund
文摘A kind of sandwich-like NiCo_2O_4/rGO/NiO heterostructure composite has been successfully anchored on nickel foam substrate via a three-step hydrothermal method with successive annealing treatment. The smart combination of NiCo_2O_4, reduced graphene oxide(rGO), and NiO nanostructure in the sandwich-like nano architecture shows a promising synergistic effect for supercapacitors with greatly enhanced electrochemical performance. For serving as supercapacitor electrode, the NiCo_2O_4/rGO/NiO heterostructure materials exhibit remarkable specific capacitance of 2644 mF cm^(-2)at current density of 1 mA cm^(-2),and excellent capacitance retentions of 97.5% after 3000 cycles. It is expected that the present heterostructure will be a promising electrode material for high-performance supercapacitors.
基金the Specialized Research Fund for the Doctoral Program of Higher Education(SRFDP No.20070486016.)Ministry of Education,China,and a Foundation for the Author of National Excellent Doctoral Dissertation of China(FANEDD)(No.200233).
文摘The substrate pre-treatment plays a key role in obtaining hollow-cored carbon nanotubes (CNTs) and solid-cored carbon nanofibers (CNFs) from flames. This paper introduces a simply and high-efficient process by coating a NiSO4 or FeSO4 layer on the substrate as catalyst precursors. Comparing with the regular pre-treatment methods, the present experiments showed that the coating pre-treatment provided the following advantages: 1) greatly shortening the synthesis time; 2) available variant substrates and carbon sources; 3) narrowing the diameters distribution. The sulfate is considered to be a crucial factor at the growth of CNTs and CNFs, because it increases the surface energy of catalyst particles and the surface specificity of sulfurs action in metallic grains. This novel process provides a possibility for high quality and mass production of CNTs and CNFs from flames.
文摘The present work studied the corrosion properties around the fusion boundaries of 2.25Cr-1Mo steel with stainless steel strip overlay joints under as welded condition and after post-weld heat treatment (PWHT) in H2 S containing solution (NACE TM-01-77 standard) with different time. An in-situ observation method was introduced for evaluating corrosive progress in the fusion boundary in H2 S containing solution, that is, the samples were marked firstly at the boundary and then treated in the solution for variant time. Each time after the corrosion treatment, the observations were kept to focus at the same marked area by using scanning electron microscopy (SEM) to observe the corrosion progress. The results reveal that the fusion boundary is the worst region for corrosion resistance when comparing with other boundaries, and a broad fusion boundary has a stronger resistance for "hydrogen induced disbonding" than a narrow one.
基金The financial supports from Department of Chemical Engineeringthe support from China Scholarship Council(CSC)for his study at NTNU。
文摘Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and Fe_(x)P particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of Fe_(x)P particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn^(-1),a power density of 92.9 m W cm^(-2) at 137 m A cm^(-2) and an excellent durability were exhibited.
基金supported by the National Natural Science Foundation of China (51871104)the Fundamental Research Funds for the Central Universities (No.2019kfy RCPY074)。
文摘As the scaling down of semiconductor devices, it would be necessary to discover the structure-property relationship of semiconductor nanomaterials at nanometer scale. In this review, the quantitative characterization technique off-axis electron holography is introduced in details, followed by its applications in various semiconductor nanomaterials including group IV, compound and two-dimensional semiconductor nanostructures in static states as well as under various stimuli. The advantages and disadvantages of off-axis electron holography in material analysis are discussed, the challenges facing in-situ electron holographic study of semiconductor devices at working conditions are presented, and all the possible influencing factors need to be considered to achieve the final goal of fulfilling quantitative characterization of the structure-property relationship of semiconductor devices at their working conditions.
文摘A method of fabricating Cu nanocrystals embedded in SiO2 dielectric film for nonvolatile memory applications by magnetron sputtering is introduced in this paper. The average size and distribution density of Cu nanocrystal grains are controlled by adjusting experimental parameters. The relationship between nanocrystal floating gate micro-structure and its charge storage capability is also discussed theoretically.
基金Supported by the National Natural Science Foundation of China under Grant Nos 50571075 and 59771049, and the Scientific Research Foundation for the Returned 0verseas Chinese Scholars, State Education Ministry. The author (JW) thanks Professor K. Urban, Dr M. Feuerbacher, Dr M. Heggen for their help and hospitality during his stay at Institut fiir FestkoSrperforschung, Forschungszentrum Jiilich, Germany, where the mechanical experiments were performed. The authors are grateful to Dr D. J. Sordelet at AMES Laboratory of USA for providing a portion of the samples for the mechanical testing.
文摘Fine-grained Al-Cu-Fe-(B) icosahedral poly-quasicrystals (1QCs) as the main materials and fine-grained Al- Pd-Mn IQCs as the supplements, both prepared by powder metallurgy, are uniaxially deformed at vaNous temperatures and strain rates. The systematic study shows the dependences of curves of the true stress versus true strain on several parameters, such as temperature, strain rate and grain size. For Al-Cu-Fe IQCs with grain sizes of about 10-30μm, QC-specific intra-granular softening drop appears in the deformation curves at lower temperatures and/or faster strain rates, but disappears in those curves at higher temperatures and/or slower strain rates, which suggests that the inter-granular effects such as grain-boundary sliding should be taken into account to interpret the continuous hardening, similarly to conventional poly-crystals. For Al-Cu-Fe-B IQCs with smaller grain sizes of about 1 μm and fine-grained AI-Pd-Mn IQCs with grain sizes of about 10μm, QC- specific intra-granular softening drop is absent for all the deformation curves at the possible lowest temperature and fastest strain rate. This implies that the sma/ler the grain size, the more the inter-granular contribution. At the same time, due to the rapid recovery caused by intense diffusion in small-sized grains, the intra-granular quasicrystal lattice reorders rapidly from disordering, which also inhibits the intra-granular softening drop to some extent.
文摘Electron magnetic circular dichroism opens a new door to explore magnetic properties by transmitted electrons in the transmission electron microscope. However, obtaining quantitative magnetic parameters, such as spin and orbital magnetic moment with element-specificity, goes a long way along with the development and improvement of this technique both in theoretical and experimental aspects. In this review, we will give a detailed description of the quantitative electron magnetic circular dichroism(EMCD) technique to measure magnetic parameters with spin-specificity, element-specificity,site-specificity, and orbital-spin-specificity. The discussion completely contains the procedures from raw experimental data acquisition to final magnetic parameters, together with the related custom code we have developed.
基金financially supported by National Natural Science foundation of China under Grant 41172046 and 40972044 in part
文摘The mineralogy of shock vein matrix in the Suizhou meteorite has been investigated by optical and transmission electron microscopy. It was revealed that the vein matrix is composed of majorite-pyrope garnet, mag- aesiowtistite, and ringwoodite, with FeNi-FeS inter- growths. The observation and character of ring-like selected electron diffraction (SAED) patterns indicate that Lhe idiomorphic garnet crystals in the vein matrix have different orientations. The polycrystalline nature of magnesiowtistite is also confirmed by a ring-like SAED pattern. Both garnet and magnesiowtistite crystals showed sharp Jiffraction spots, signifying the good crystallinity of these :wo minerals. The SAED pattern of cryptocrystalline 5ngwoodite shows only diffuse concentric diffraction tings. FeNi metal and troilite (FeS), which were molten during the shock event, occur in the matrix as fine eutectic FeNi-FeS intergrowths filling the interstices between garaet and magnesiowiistite grains. Based on the phase dia- gram of the Allende chondrite and the results of this TEM study, it is inferred that majorite-pyrope garnet first crystallized from the Suizhou chondritic melt at 22-26 GPa, Followed by crystallization of magnesiowtistite at 20-24 GPa, and then ringwoodite at 18-20 GPa. The eutectic intergrowths of FeNi-metal and troilite are proposed to have crystallized during meteorite cooling and solidified at the last stage of vein formation.
基金supported by the National Natural Science Foundation of China (Nos.52071237,12074290,51871169,52101021,and 12104345)the Natural Science Foundation of Jiangsu Province (No.BK20191187)+1 种基金the Young Top-notch Talent Cultivation Program of Hubei Province,the Science and Technology Program of Shenzhen (No.JCYJ20190808150407522)the China Postdoctoral Science Foundation (No.2019M652685).
文摘Deformation twinning serves as an important mode of plastic dissipation processes in nanoscale body-centered cubic(BCC)metals,but its origin and spatio-temporal features are mysterious.Here,applying in situ tensile experiments,we report a strong size effect on mediating the twinning behaviors and twin boundary(TB)-dislocation interaction mechanisms in BCC iron(Fe)nanowires(NWs).There exists a critical diameter(d)of∼2.5 nm,above which the deformation twinning rather than dislocation slip dominates the plasticity.Unlike the traditional reflection TBs,the intermediate isosceles TBs are consis-tently observed as mediated by the 1/12<111>partial dislocations.Moreover,we uncover two distinct TB-related deformation mechanisms,including twin variant re-orientation and TB cracking for NWs with d<17 nm and d>17 nm,respectively.Further molecular dynamics and statics simulations provide the basic underlying mechanisms for size-dependent plasticity,which have been largely overlooked in previous experimental investigations.Our findings highlight the importance of grain size in mediating the deformation behaviors in Fe,serving as possible guidance for exploring single-crystalline and poly-crystalline Fe-based materials(e.g.steel)with optimized mechanical performance.
基金supported by the National Natural Science Foun-dation of China(No.52071237,12074290,51871169,52101021,and 12104345)the Natural Science Foundation of Jiangsu Province(No.BK20191187)+1 种基金the Young Top-notch Talent Cultivation Program of Hubei Province,the Science and Technology Program of Shenzhen(No.JCYJ20190808150407522)the China Postdoctoral Science Foundation(No.2019M652685).
文摘The knowledge regarding anisotropic mechanical behaviors in nanoscale body-centered cubic (bcc) metals remains obscure. Herein, we report the orientation-dependent ductility in bcc Mo nanocrystals (NCs), which exhibit poor ductility along [110] direction but possess relatively better ductility along the [001] and [112] orientations. The origin of different deformability can be traced down to the distinct deformation mechanisms: the unexpected crack nucleation and propagation induce premature fractures in [110]-oriented NCs;in contrast, deformation twinning could contribute to the enhanced ductility in [001]-oriented NCs;interestingly, we find the activation of multiple dislocation slips in [112]-oriented NCs with the highest ductility. Further molecular dynamics simulations provide deeper insights into the defect dynamics that are closely interlinked with experimental observations. Our findings advance the basic understanding of orientation-dependent mechanical properties and help to guide endeavors to architecture the microstructures of bcc metals with enhanced ductility.
基金supported by the National Natural Science Foundation of China(Nos.62075142,12074271,12074416,and 12222414)the Youth Innovation Promotion Association of CAS(No.Y2022003).
文摘High-performance active terahertz modulators as the indispensable core components are of great importance for the next generation communication technology.However,they currently suffer from the tradeoff between modulation depth and speed.Here,we introduce two-dimensional(2D)tellurium(Te)nanofilms with the unique structure as a new class of optically controlled terahertz modulators and demonstrate their integrated heterojunctions can successfully improve the device performances to the optimal and applicable levels among the existing all-2D broadband modulators.Further photoresponse measurements confirm the significant impact of the stacking order.We first clarify the direction of the substrate-induced electric field through first-principles calculations and uncover the unusual interaction mechanism in the photoexcited carrier dynamics associated with the charge transfer and interlayer exciton recombination.This advances the fundamental and applicative research of Te nanomaterials in high-performance terahertz optoelectronics.
基金supported by the National Natural Science Foundation of China(Nos.11904294 and 62004172)the foundation of Westlake Multidisciplinary Research Initiative Center(MRIC,Nos.MRIC20200402 and 20200101).
文摘Bi_(2)O_(2)Se is highly competitive as a candidate of next-generation high-performance semiconductors.Though dubbed as semiconductor,Bi_(2)O_(2)Se films exhibited high conductance,i.e.,metallic behavior,due to spontaneously ionized defects.Semiconducting/insulating films are of practical importance in broad applications based on low-power,high-performance electronics,the existence of which lacks firm evidence.Here,we synthesized highly insulating films in a controlled way,which exhibit semiconducting behavior with channel resistance up to 1 TΩ.The electron chemical potential lies within the band gap,in some cases,even below the charge neutrality level,signifying the trace of hole-type semiconducting.The performance of insulating devices remains high,comparable to high-quality devices previously.Especially,the threshold voltage(Vth)is positive,contrary to common negative values reported.Calculations indicate that our synthesis conditions suppress electron donors(Se vacancies(VSe))and promote the formation of compensating acceptors(Bi vacancies(VBi)),leading to insulating behaviors.Our work offers insights into electron dynamics of Bi_(2)O_(2)Se,moves one step further towards p-type transistors and provides a valuable playground for engineering ferroelectricity in high-performance semiconductors.
基金financially supported by the National Natural Science Foundation of China (Nos.51772142 and22106121)Guangdong Science and Technology Department (No.2016ZT06C279)。
文摘Developing highly active and stable Pt-based nanocatalysts towards the ethanol oxidation reaction(EOR)is still a challenge for the commercialization of direct ethanol fuel cells.Herein,SnO_(2) patched ultrathin PtRhM(M=Ni or Co)nano wires are synthesized by a facile two-step method.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.51871222 and 52171021)Japan Soci-ety for the Promotion of Science(No.P20737)Natural Science Foundation of Liaoning Province(No.2023-MS-018).
文摘Using high-resolution transmission Kikuchi diffraction(TKD)and transmission electron microscopy(TEM),we examined the hierarchical clusters that form in situ in the heat-affected zone(HAZ),which are com-monly referred to as“ghost”structures,of bimodal titanium alloy Ti-5Al-2Sn-2Zr-4Mo-4Cr(wt%,TC17).The ghost structures are enriched with Al elements but poor in Mo and Cr compared to the surroundingβmatrix.TKD results show that the ghost structure in middle-HAZ mainly consists ofα_(L)laths with a high-angle grain boundary,which exhibits the classic Burgers orientation relationship(BOR)with the host matrix,while it encircles theα_(P)grains in far-HAZ.And the ghost structure is evidenced to form via in-complete martensitic transformation.TEM results further confirm that the ghost structure is composed ofαL and tinyβ_(L)laths with BOR,with the former being enriched with Al and poor with Cr and Mo,while the latter is the opposite.Interestingly,twoα_(L)variant clusters with a check-mark morphology are fre-quently observed viewed along[0001]_(αL)//[110]_(βL)directions,which are dominated by the crystallographic and geometrical relationships betweenαandβphases.Based on the microstructural characterization,it is hypothesized that the ghost structure is transformed from the initialα_(P)phase,due to the coupling ef-fect of high thermal stress(which induces the formation of a large number of dislocations)and element diffusion caused by sudden temperature increase and plunge cooling in the HAZ during the welding pro-cess.