期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Selectivity control of photocatalytic CO_(2) reduction over ZnS-based nanocrystals:A comparison study on the role of ionic cocatalysts
1
作者 Hong Pang Fumihiko Ichihara +4 位作者 Xianguang Meng Lijuan Li Yuqi Xiao Wei Zhou Jinhua Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期391-398,I0009,共9页
Taking copper doped ZnS(ZnS:Cu)nanocrystals as the main body of photocatalyst,the influence of different base transition metal ions(M^(2+)=Ni^(2+),Co^(2+),Fe^(2+)and Cd^(2+))on photocatalytic CO_(2)reduction in inorga... Taking copper doped ZnS(ZnS:Cu)nanocrystals as the main body of photocatalyst,the influence of different base transition metal ions(M^(2+)=Ni^(2+),Co^(2+),Fe^(2+)and Cd^(2+))on photocatalytic CO_(2)reduction in inorganic reaction system is investigated.Confined single-atom Ni^(2+),Co^(2+),and Cd^(2+)sites were created via cation-exchange process and enhanced CO_(2)reduction,while Fe^(2+)suppressed the photocatalytic activity for both water and CO_(2)reduction.The modified ZnS:Cu photocatalysts(M/ZnS:Cu)demonstrated tunable product selectivity,with Ni^(2+)and Co^(2+)showing high selectivity for syngas production and Cd^(2+)displaying remarkable formate selectivity.DFT calculations indicated favorable H adsorption free energy on Ni^(2+)and Co^(2+)sites,promoting the hydrogen evolution reaction.The selectivity of CO_(2)reduction products was found to be sensitive to the initial intermediate adsorption states.*COOH formed on Ni^(2+)and Co^(2+)while*OCHO formed on Cd^(2+),favoring the production of CO and HCOOH as the main products,respectively.This work provides valuable insights for developing efficient solar-to-fuel platforms with controlled CO_(2)reduction selectivity. 展开更多
关键词 CO_(2) reduction Photocatalysis Zns Ionic cocatalyst FORMATE Syngas DFT calculations
下载PDF
Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery 被引量:2
2
作者 Yong Youn Bo Gao +3 位作者 Azusa Kamiyama Kei Kubota Shinichi Komaba Yoshitaka Tateyama 《npj Computational Materials》 SCIE EI CSCD 2021年第1期440-447,共8页
Development of high-energy-density anode is crucial for practical application of Na-ion battery as a post Li-ion battery.Hard carbon(HC),though a promising anode candidate,still has bottlenecks of insufficient capacit... Development of high-energy-density anode is crucial for practical application of Na-ion battery as a post Li-ion battery.Hard carbon(HC),though a promising anode candidate,still has bottlenecks of insufficient capacity and unclear microscopic picture.Usage of the micropore has been recently discussed,however,the underlying sodiation mechanism is still controversial.Herein we examined the origin for the high-capacity sodiation of HC,based on density functional theory calculations.We demonstrated that nanometersize Na cluster with 3–6 layers is energetically stable between two sheets of graphene,a model micropore,in addition to the adsorption and intercalation mechanisms.The finding well explains the extended capacity over typical 300 mAhg^(−1),up to 478 mAhg^(−1) recently found in the MgO-templated HC.We also clarified that the MgO-template can produce suitable nanometersize micropores with slightly defective graphitic domains in HC.The present study considerably promotes the atomistic theory of sodiation mechanism and complicated HC science. 展开更多
关键词 BATTERY cluster SIZE
原文传递
Structure search of two-dimensional systems using CALYPSO methodology
3
作者 Pengyue Gao Bo Gao +4 位作者 Shaohua Lu Hanyu Liu Jian Lv Yanchao Wang Yanming Ma 《Frontiers of physics》 SCIE CSCD 2022年第2期121-134,共14页
The dimensionality of structures allows materials to be classified into zero-, one-, two-, and threedimensional systems. Two-dimensional (2D) systems have attracted a great deal of attention andtypically include surfa... The dimensionality of structures allows materials to be classified into zero-, one-, two-, and threedimensional systems. Two-dimensional (2D) systems have attracted a great deal of attention andtypically include surfaces, interfaces, and layered materials. Due to their varied properties, 2D systemshold promise for applications such as electronics, optoelectronics, magnetronics, and valleytronics.The design of 2D systems is an area of intensive research because of the rapid development of abinitio structure-searching methods. In this paper, we highlight recent research progress on acceleratingthe design of 2D systems using the CALYPSO methodology. Challenges and perspectives for futuredevelopments in 2D structure prediction methods are also presented. 展开更多
关键词 two-dimensional(2D)systems CALYPSO structure prediction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部