期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
High-Pressure Ultrafast Dynamics in Sr2Ir04:Pressure-Induced Phonon Bottleneck Effect 被引量:3
1
作者 Yanling Wu Xia Yin +2 位作者 Jiazila Hasaien Yang Ding Jimin Zhao 《Chinese Physics Letters》 SCIE CAS CSCD 2020年第4期129-134,共6页
By integrating pump-probe ultrafast spectroscopy with diamond anvil cell(DAC)technique,we demonstrate a time-resolved ultrafast dynamics study on non-equilibrium quasiparticle(QP)states in.SVo/rQi under high pressure.... By integrating pump-probe ultrafast spectroscopy with diamond anvil cell(DAC)technique,we demonstrate a time-resolved ultrafast dynamics study on non-equilibrium quasiparticle(QP)states in.SVo/rQi under high pressure.On-site in situ condition is realized,where both the sample and DAC have fixed position during the experiment.The QP dynamics exhibits a salient pressure-induced phonon bottleneck feature at 20GPa,which corresponds to a gap shrinkage in the electronic structure.A structural transition is also observed at 32 GPa.In addition,the slowest relaxation component reveals possible heat diffusion or pressure-controlled local spin fluctuation associated with the gap shrinkage.Our work enables precise pressure dependence investigations of ultrafast dynamics,paving the way for reliable studies of high-pressure excited state physics. 展开更多
关键词 structure. RELAXATION integrating
下载PDF
Ultrafast dynamics in photo-excited Mott insulator Sr_(3)Ir_(2)O_7 at high pressure
2
作者 尹霞 张建波 +6 位作者 王东 Takeshi Nakagawa 夏春生 张曹顺 郭伟程 昌峻 丁阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期149-155,共7页
High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for ... High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for studying delicate phase transitions caused by complex interactions in Mott insulators.With time-resolved transient reflectivity measurements,we identified the new phases in the spin–orbit Mott insulator Sr_(3)Ir_(2)O_7 at 300 K that was previously unidentified using conventional approaches such as x-ray diffraction.Significant pressure-dependent variation of the amplitude and lifetime obtained by fitting the reflectivity?R/R reveal the changes of electronic structure caused by lattice distortions,and reflect the critical phenomena of phase transitions.Our findings demonstrate the importance of ultrafast nonequilibrium dynamics under extreme conditions for understanding the phase transition of Mott insulators. 展开更多
关键词 ultrafast dynamics high pressure phase transition Mott insulator
下载PDF
Unveiling a novel metal-to-metal transition in LuH_(2):Critically challenging superconductivity claims in lutetium hydrides
3
作者 Dong Wang Ningning Wang +15 位作者 Caoshun Zhang Chunsheng Xia Weicheng Guo Xia Yin Kejun Bu Takeshi Nakagawa Jianbo Zhang Federico Gorelli Philip Dalladay-Simpson Thomas Meier Xujie Lü Liling Sun Jinguang Cheng Qiaoshi Zeng Yang Ding Ho-kwang Mao 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第3期65-73,共9页
Following the recent report by Dasenbrock-Gammon et al.[Nature 615,244–250(2023)]of near-ambient superconductivity in nitrogendoped lutetium trihydride(LuH_(3-δ)N_(ε)),significant debate has emerged surrounding the... Following the recent report by Dasenbrock-Gammon et al.[Nature 615,244–250(2023)]of near-ambient superconductivity in nitrogendoped lutetium trihydride(LuH_(3-δ)N_(ε)),significant debate has emerged surrounding the composition and interpretation of the observed sharp resistance drop.Here,we meticulously revisit these claims through comprehensive characterization and investigations.We definitively identify the reported material as lutetium dihydride(LuH_(2)),resolving the ambiguity surrounding its composition.Under similar conditions(270–295 K and 1–2 GPa),we replicate the reported sharp decrease in electrical resistance with a 30%success rate,aligning with the observations by Dasenbrock-Gammon et al.However,our extensive investigations reveal this phenomenon to be a novel pressure-induced metal-to-metal transition intrinsic to LuH_(2),distinct from superconductivity.Intriguingly,nitrogen doping exerts minimal impact on this transition.Our work not only elucidates the fundamental properties of LuH_(2)andLuH_(3),but also critically challenges the notion of superconductivity in these lutetium hydride systems.These findings pave the way for future research on lutetium hydride systems,while emphasizing the crucial importance of rigorous verification in claims of ambient-temperature superconductivity. 展开更多
关键词 RESISTANCE HYDRIDE SUPERCONDUCTIVITY
下载PDF
Pressure induced insulator to metal transition in quantum spin liquid candidate NaYbS_(2)
4
作者 贾雅婷 龚春生 +6 位作者 李芷文 刘以轩 赵建发 王哲 雷和畅 于润泽 靳常青 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期369-372,共4页
Pressure induced insulator to metal transition followed by the appearance of superconductivity has been observed recently in inorganic quantum spin liquid candidate NaYbSe_(2).In this paper,we study the properties of ... Pressure induced insulator to metal transition followed by the appearance of superconductivity has been observed recently in inorganic quantum spin liquid candidate NaYbSe_(2).In this paper,we study the properties of isostructural compound NaYbS_(2)under pressure.It is found that the resistance of Na YbS_(2)single crystal exhibits an insulating state below 82.9 GPa,but with a drop of more than six orders of magnitude at room temperature.Then a minimum of resistance is observed at about 100.1 GPa and it moves to lower temperature with further compression.Finally,a metallic state in the whole temperature range is observed at about 130.3 GPa accompanied by a non-Fermi liquid behavior below 100 K.The insulator to metal transition,non-monotonic resistance feature and non-Fermi liquid behavior of NaYbS_(2)under pressure are similar to those of NaYbSe_(2),suggesting that these phenomena might be the universal properties in NaLnCh_(2)(Ln=rare earth,Ch=O,S,Se)system. 展开更多
关键词 high pressure quantum spin liquid insulator to metal transition NaYbS_(2)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部