This study was carried out to evaluate the effect of hardfacing consumables on ballistic performance of armour grade quenched and tempered(Q&T)steel welded joints.To evaluate the effect of hardfacing consumables,j...This study was carried out to evaluate the effect of hardfacing consumables on ballistic performance of armour grade quenched and tempered(Q&T)steel welded joints.To evaluate the effect of hardfacing consumables,joints were fabricated using 4 mm thick tungsten carbide(WC)/chromium carbide(CrC)hardfaced middle layer;above and below which austenitic stainless steel(SS)layers were deposited on both sides of the hardfaced interlayer.Shielded metal arc welding(SMAW)process were used to deposite all(hardfaced layer and SS layers)layers.The fabricated joints were evaluated for its ballistic performance,and the results were compared with respect to depth of penetration(DOP)on weld metal and heat-affected zone(HAZ)locations.From the ballistic test results,it was observed that both the joints successfully stopped the bullet penetration at weld center line.Of the two joints,the joint made with CrC hardfaced interlayer(CAHA)offered better ballistic resistance at weld metal.This is because its hardness is higher due to the presence of primary carbides of needle shape,polyhedral shape and eutectic matrix containing a mixture of gt M7C3carbides in the CrC hardfaced interlayer.The scattering hardness level in the WC interlayer,the matrix decomposition resulted lower hardness and the co-existence of d ferrite in the interface between hardfacing and SS root/SS cap could be attributed to the inferior ballistic resistance of the joint made with WC hardfaced interlayer(WAHA joint).展开更多
Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat tre...Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat treatable(AA 5086) aluminium alloys by friction stir welding(FSW)process using three different tool pin profiles like straight cylindrical,taper cylindrical and threaded cylindrical.The microstructures of various regions were observed and analyzed by means of optical and scanning electron microscope.The tensile properties and microhardness were evaluated for the welded joint.From this investigation it is founded that the use of threaded pin profile of tool contributes to better flow of materials between two alloys and the generation of defect free stir zone.It also resulted in higher hardness values of 83 HV in the stir zone and higher tensile strength of 169 MPa compared to other two profiles.The increase in hardness is attributed to the formation of fine grains and intermetallics in the stir zone,and in addition,the reduced size of weaker regions,such as TMAZ and HAZ regions,results in higher tensile properties.展开更多
The extruded AZ61A magnesium alloy plates of 6 mm thickness were butt welded using friction stir welding(FSW) process.The corrosion behavior of the welds was evaluated by conducting immersion test in NaCl solution a...The extruded AZ61A magnesium alloy plates of 6 mm thickness were butt welded using friction stir welding(FSW) process.The corrosion behavior of the welds was evaluated by conducting immersion test in NaCl solution at different pH value,immersion time and chloride ion concentrations.An empirical relationship was established incorporating pH value,immersion time and chloride ion concentration to predict the corrosion rate of friction stir welds of AZ61A magnesium alloy at 95% confidence level.Three-factor,five-level central composite rotatable design was used to minimize the number of experimental conditions.Response surface method was used to develop the relationship.The results show that the corrosion resistance of AZ61A magnesium alloy welds in the alkaline solution is better than that in the acidic and neutral solutions,moreover,low corrosion rate is found at low concentrated solution and longer exposure time,and the corrosion morphology is predominantly influenced by the distribution of β-phase.展开更多
基金the Armament Research Board (ARMREB), Directorate of Armaments, Ministry of Defence, New Delhi, Government of India for providing financial support to carry out this investigation through a R&D project, No. ARMREB/MAA/2008/ 93
文摘This study was carried out to evaluate the effect of hardfacing consumables on ballistic performance of armour grade quenched and tempered(Q&T)steel welded joints.To evaluate the effect of hardfacing consumables,joints were fabricated using 4 mm thick tungsten carbide(WC)/chromium carbide(CrC)hardfaced middle layer;above and below which austenitic stainless steel(SS)layers were deposited on both sides of the hardfaced interlayer.Shielded metal arc welding(SMAW)process were used to deposite all(hardfaced layer and SS layers)layers.The fabricated joints were evaluated for its ballistic performance,and the results were compared with respect to depth of penetration(DOP)on weld metal and heat-affected zone(HAZ)locations.From the ballistic test results,it was observed that both the joints successfully stopped the bullet penetration at weld center line.Of the two joints,the joint made with CrC hardfaced interlayer(CAHA)offered better ballistic resistance at weld metal.This is because its hardness is higher due to the presence of primary carbides of needle shape,polyhedral shape and eutectic matrix containing a mixture of gt M7C3carbides in the CrC hardfaced interlayer.The scattering hardness level in the WC interlayer,the matrix decomposition resulted lower hardness and the co-existence of d ferrite in the interface between hardfacing and SS root/SS cap could be attributed to the inferior ballistic resistance of the joint made with WC hardfaced interlayer(WAHA joint).
基金the support extended by the Centre for Materials Joining & Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, India to carry out this research
文摘Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat treatable(AA 5086) aluminium alloys by friction stir welding(FSW)process using three different tool pin profiles like straight cylindrical,taper cylindrical and threaded cylindrical.The microstructures of various regions were observed and analyzed by means of optical and scanning electron microscope.The tensile properties and microhardness were evaluated for the welded joint.From this investigation it is founded that the use of threaded pin profile of tool contributes to better flow of materials between two alloys and the generation of defect free stir zone.It also resulted in higher hardness values of 83 HV in the stir zone and higher tensile strength of 169 MPa compared to other two profiles.The increase in hardness is attributed to the formation of fine grains and intermetallics in the stir zone,and in addition,the reduced size of weaker regions,such as TMAZ and HAZ regions,results in higher tensile properties.
文摘The extruded AZ61A magnesium alloy plates of 6 mm thickness were butt welded using friction stir welding(FSW) process.The corrosion behavior of the welds was evaluated by conducting immersion test in NaCl solution at different pH value,immersion time and chloride ion concentrations.An empirical relationship was established incorporating pH value,immersion time and chloride ion concentration to predict the corrosion rate of friction stir welds of AZ61A magnesium alloy at 95% confidence level.Three-factor,five-level central composite rotatable design was used to minimize the number of experimental conditions.Response surface method was used to develop the relationship.The results show that the corrosion resistance of AZ61A magnesium alloy welds in the alkaline solution is better than that in the acidic and neutral solutions,moreover,low corrosion rate is found at low concentrated solution and longer exposure time,and the corrosion morphology is predominantly influenced by the distribution of β-phase.