With the growing energy demand associated with high safety and low-cost requirement,aqueous zinc-ion batteries(AZIBs)have been considered as one of the most promising next-generation batteries.However,some key issues,...With the growing energy demand associated with high safety and low-cost requirement,aqueous zinc-ion batteries(AZIBs)have been considered as one of the most promising next-generation batteries.However,some key issues,such as uncontrollable dendrites growth,severe corrosion,hydrogen evolution and side reactions of Zn anodes during charge/discharge process,have hindered its pragmatic applications.Two-dimensional(2D)materials hold advantages of unique physical and chemical properties,large surface areas and abundant active sites,which have been successfully used to overcome the above shortcomings of Zn anodes in recent years.In this review,the issues and challenges of Zn anodes are outlined.Then,the state-of-the-art progress on Zn anodes modification based on 2D materials such as graphene,2D metal carbides and nitrides(MXenes),2D metal-organic frameworks(MOFs),2D covalent organic frameworks(COFs),2D transition metal compounds and other 2D materials is discussed in detail.Finally,the perspectives of employing 2D materials in highly reversible Zn anodes are summarized and discussed.展开更多
基金financially supported by the Fundamental Research Funds for the Provincial Universities of Zhejiang(No.RF-B-2020004)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(No.2020R01002)+2 种基金the National Key Research and Development Project of China(No.2022YFE0113800)the National Natural Science Foundation of China(Nos.51972286,21905246 and 22005268)the Natural Science Foundation of Zhejiang Province(Nos.LR19E020003,LZ21E020003,LQ21E020004 and LQ20B010011)。
文摘With the growing energy demand associated with high safety and low-cost requirement,aqueous zinc-ion batteries(AZIBs)have been considered as one of the most promising next-generation batteries.However,some key issues,such as uncontrollable dendrites growth,severe corrosion,hydrogen evolution and side reactions of Zn anodes during charge/discharge process,have hindered its pragmatic applications.Two-dimensional(2D)materials hold advantages of unique physical and chemical properties,large surface areas and abundant active sites,which have been successfully used to overcome the above shortcomings of Zn anodes in recent years.In this review,the issues and challenges of Zn anodes are outlined.Then,the state-of-the-art progress on Zn anodes modification based on 2D materials such as graphene,2D metal carbides and nitrides(MXenes),2D metal-organic frameworks(MOFs),2D covalent organic frameworks(COFs),2D transition metal compounds and other 2D materials is discussed in detail.Finally,the perspectives of employing 2D materials in highly reversible Zn anodes are summarized and discussed.