More than a century has elapsed since the identification of Clostridia neurotoxins as the cause of paralytic diseases. Clostridium botulinum is a heterogeneous group of Gram-positive, rod-shaped, spore-forming, obliga...More than a century has elapsed since the identification of Clostridia neurotoxins as the cause of paralytic diseases. Clostridium botulinum is a heterogeneous group of Gram-positive, rod-shaped, spore-forming, obligate anaerobic bacteria that produce a potent neurotoxin. Eight different Clostridium botulinum neurotoxins have been described(A-H) and 5 of those cause disease in humans. These toxins cause paralysis by blocking the presynaptic release of acetylcholine at the neuromuscular junction. Advantage can be taken of this blockade to alleviate muscle spams due to excessive neural activity of central origin or to weaken a muscle for treatment purposes. In therapeutic applications, minute quantities of botulinum neurotoxin type A are injected directly into selected muscles. The Food and Drug Administration first approved botulinum toxin(BT) type A in 1989 for the treatment of strabismus and blepharospasm associated with dystonia in patients 12 years of age or older. Ever since, therapeutic applications of BT have expanded to other systems, including the gastrointestinal tract. Although only a single fatality has been reported to our knowledge with use of BT for gastroenterological conditions, there are significant complications ranging from minor pain, rash and allergic reactions to pneumothorax, bowel perforation and significant paralysis of tissues surrounding the injection(including vocal cord paralysis and dysphagia). This editorial describes the clinical experience and evidence for the use BT in gastrointestinal motility disorders in children.展开更多
文摘More than a century has elapsed since the identification of Clostridia neurotoxins as the cause of paralytic diseases. Clostridium botulinum is a heterogeneous group of Gram-positive, rod-shaped, spore-forming, obligate anaerobic bacteria that produce a potent neurotoxin. Eight different Clostridium botulinum neurotoxins have been described(A-H) and 5 of those cause disease in humans. These toxins cause paralysis by blocking the presynaptic release of acetylcholine at the neuromuscular junction. Advantage can be taken of this blockade to alleviate muscle spams due to excessive neural activity of central origin or to weaken a muscle for treatment purposes. In therapeutic applications, minute quantities of botulinum neurotoxin type A are injected directly into selected muscles. The Food and Drug Administration first approved botulinum toxin(BT) type A in 1989 for the treatment of strabismus and blepharospasm associated with dystonia in patients 12 years of age or older. Ever since, therapeutic applications of BT have expanded to other systems, including the gastrointestinal tract. Although only a single fatality has been reported to our knowledge with use of BT for gastroenterological conditions, there are significant complications ranging from minor pain, rash and allergic reactions to pneumothorax, bowel perforation and significant paralysis of tissues surrounding the injection(including vocal cord paralysis and dysphagia). This editorial describes the clinical experience and evidence for the use BT in gastrointestinal motility disorders in children.