Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance,the practical applications still suffering from inferior electrochemical activity owing to its low electrical ...Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance,the practical applications still suffering from inferior electrochemical activity owing to its low electrical conductivity,poor structural stability and inefficient nanostructure.Herein,we report a novel Cu0/Cu+co-doped CoO composite with adjustable metallic Cu0 and ion Cu+via a facile strategy.Through interior(Cu+)and exterior(Cu0)decoration of CoO,the electrochemical performance of CoO electrode has been significantly improved due to both the beneficial flower-like nanostructure and the synergetic effect of Cu0/Cu+co-doping,which results in a significantly enhanced specific capacitance(695 F g^(-1) at 1 A g^(-1))and high cyclic stability(93.4%retention over 10,000 cycles)than pristine CoO.Furthermore,this co-doping strategy is also applicable to other transition metal oxide(NiO)with enhanced electrochemical performance.In addition,an asymmetric hybrid supercapacitor was assembled using the Cu0/Cu+co-doped CoO electrode and active carbon,which delivers a remarkable maximal energy density(35 Wh kg^(-1)),exceptional power density(16 kW kg^(-1))and ultralong cycle life(91.5%retention over 10,000 cycles).Theoretical calculations further verify that the co-doping of Cu^(0)/Cu^(+)can tune the electronic structure of CoO and improve the conductivity and electron transport.This study demonstrates a facile and favorable strategy to enhance the electrochemical performance of transition metal oxide electrode materials.展开更多
Nowadays, fabrication of micro/nano-scale electronic devices with bottom-up approach is paid much research attention. Here, we provide a novel micro/nano-assembling method, which is accurate and efficient, especially ...Nowadays, fabrication of micro/nano-scale electronic devices with bottom-up approach is paid much research attention. Here, we provide a novel micro/nano-assembling method, which is accurate and efficient, especially suitable for the fabrication of micro/nano-scale electronic devices. Using this method, a self-powered ZnO/Sb-doped ZnO nanowire p–n homojunction ultraviolet detector(UVD) was fabricated, and the detailed photoelectric properties were tested. At a reverse bias of -0.1 V under UV light illumination, the photoresponse sensitivity of the UVD was 26.5 and the rise/decay time of the UVD was as short as 30 ms. The micro/nano-assembling method has wide potential applications in the fabrication of specific micro/nano-scale electronic devices.展开更多
Self-powered devices are widely used in the detection and sensing fields.Asymmetric metal contacts provide an effective way to obtain self-powered devices.Finding two stable metallic electrode materials with large wor...Self-powered devices are widely used in the detection and sensing fields.Asymmetric metal contacts provide an effective way to obtain self-powered devices.Finding two stable metallic electrode materials with large work function differences is the key to obtain highly efficient asymmetric metal contacts structures.However,common metal electrode materials have similar and high work functions,making it difficult to form an asymmetric contacts structure with a large work function difference.Herein,Mo2C crystals with low work function(3.8 eV) was obtained by chemical vapor deposition(CVD) method.The large work function difference between Mo2C and Au allowed us to synthesize an efficient Mo2C/MoS2/Au photodetector with asymmetric metal contact structure,which enables light detection without external electric power.We believe that this novel device provides a new direcfor the design of miniature self-powered photodetectors.These results also highlight the great potential of ultrathin Mo2C prepared by CVD in heterojunction device applications.展开更多
基金financially supported by the National Science Foundation of China(Grant No.11804106)。
文摘Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance,the practical applications still suffering from inferior electrochemical activity owing to its low electrical conductivity,poor structural stability and inefficient nanostructure.Herein,we report a novel Cu0/Cu+co-doped CoO composite with adjustable metallic Cu0 and ion Cu+via a facile strategy.Through interior(Cu+)and exterior(Cu0)decoration of CoO,the electrochemical performance of CoO electrode has been significantly improved due to both the beneficial flower-like nanostructure and the synergetic effect of Cu0/Cu+co-doping,which results in a significantly enhanced specific capacitance(695 F g^(-1) at 1 A g^(-1))and high cyclic stability(93.4%retention over 10,000 cycles)than pristine CoO.Furthermore,this co-doping strategy is also applicable to other transition metal oxide(NiO)with enhanced electrochemical performance.In addition,an asymmetric hybrid supercapacitor was assembled using the Cu0/Cu+co-doped CoO electrode and active carbon,which delivers a remarkable maximal energy density(35 Wh kg^(-1)),exceptional power density(16 kW kg^(-1))and ultralong cycle life(91.5%retention over 10,000 cycles).Theoretical calculations further verify that the co-doping of Cu^(0)/Cu^(+)can tune the electronic structure of CoO and improve the conductivity and electron transport.This study demonstrates a facile and favorable strategy to enhance the electrochemical performance of transition metal oxide electrode materials.
基金supported by the National Natural Science Foundation of China (11374110, 51371085, 11304106)
文摘Nowadays, fabrication of micro/nano-scale electronic devices with bottom-up approach is paid much research attention. Here, we provide a novel micro/nano-assembling method, which is accurate and efficient, especially suitable for the fabrication of micro/nano-scale electronic devices. Using this method, a self-powered ZnO/Sb-doped ZnO nanowire p–n homojunction ultraviolet detector(UVD) was fabricated, and the detailed photoelectric properties were tested. At a reverse bias of -0.1 V under UV light illumination, the photoresponse sensitivity of the UVD was 26.5 and the rise/decay time of the UVD was as short as 30 ms. The micro/nano-assembling method has wide potential applications in the fabrication of specific micro/nano-scale electronic devices.
基金supported by the National Natural Science Foundation of China(11674113,U1765105)the support of experimental facilities in WNLO of HUSTAnalysis and Testing Center of HUST for support
文摘Self-powered devices are widely used in the detection and sensing fields.Asymmetric metal contacts provide an effective way to obtain self-powered devices.Finding two stable metallic electrode materials with large work function differences is the key to obtain highly efficient asymmetric metal contacts structures.However,common metal electrode materials have similar and high work functions,making it difficult to form an asymmetric contacts structure with a large work function difference.Herein,Mo2C crystals with low work function(3.8 eV) was obtained by chemical vapor deposition(CVD) method.The large work function difference between Mo2C and Au allowed us to synthesize an efficient Mo2C/MoS2/Au photodetector with asymmetric metal contact structure,which enables light detection without external electric power.We believe that this novel device provides a new direcfor the design of miniature self-powered photodetectors.These results also highlight the great potential of ultrathin Mo2C prepared by CVD in heterojunction device applications.