There are large uncertainties in the quantitative assessment of radiative effects due to atmospheric dust aerosol. The optical properties contribute much to those uncertainties. The authors perform several sensitivity...There are large uncertainties in the quantitative assessment of radiative effects due to atmospheric dust aerosol. The optical properties contribute much to those uncertainties. The authors perform several sensitivity experiments to estimate the impacts of optical characteristics on regional radiative forcing in this paper. The experiments involve in refractive indices, single scattering aibedo, asymmetry factor and optical depth. An updated dataset of refractive indices representing East Asian dust and the one recommended by the World Meteorology Organization (WMO) are contrastively analyzed and used. A radiative transfer code for solar and thermal infrared radiation with detailed aerosol parameterization is employed. The strongest emphasis is on the refractive indices since other optical parameters strongly depend on it, and the authors found a strong sensitivity of radiative forcing on refractive indices. Studies show stronger scattering, weaker absorption and forward scattering of the East Asian dust particles at solar wavelengths, which leads to higher negative forcing, lower positive forcing and bigger net forcing at the top of the atmosphere (TOA) than that of the WMO dust model. It is also found that the TOA forcings resulting from these two dust models have opposite signs in certain regions, which implies the importance of accurate measurements of optical properties in the quantitative estimation of radiative forcing.展开更多
A high resolution nonhydrostatic tropical atmospheric model is developed by using a ready-made regional atmospheric modeling system. The motivation is to investigate the convective activities associated with the tropi...A high resolution nonhydrostatic tropical atmospheric model is developed by using a ready-made regional atmospheric modeling system. The motivation is to investigate the convective activities associated with the tropical intraseasonal oscillation (ISO) through a cloud resolving calculation. Due to limitations in computing resources, a展开更多
Aerosol indirect effects (AIEs) on global climate were quantitatively investigated by introducing aerosol–cloud interaction parameterizations for water stratus clouds into an AGCM (BCC AGCM2.0.1), which was devel...Aerosol indirect effects (AIEs) on global climate were quantitatively investigated by introducing aerosol–cloud interaction parameterizations for water stratus clouds into an AGCM (BCC AGCM2.0.1), which was developed by the National Climate Center of the China Meteorological Administration. The study yielded a global annual mean of -1.14 W m^-2 for the first indirect radiative forcing (IRF), with an obvious seasonal change. In summer, large forcing mainly occurred in mid to high latitudes of the Northern Hemisphere, whereas in winter, large values were found at 60°S. The second indirect effect led to global annual mean changes in net shortwave flux of -1.03 W m^-2 at the top of the atmosphere (TOA), which was relatively significant in mid-latitude regions of both hemispheres. The total AIE reduced the global annual means of net shortwave flux at the TOA and of surface temperature by 1.93 W m^-2 and 0.12 K, respectively. Change in surface temperature induced by the total AIE was clearly larger in the Northern Hemisphere (-0.23 K) than in the Southern Hemisphere, where changes were negligible. The interhemispheric asymmetry in surface cooling resulted in significant differences in changes of the interhemispheric annual mean precipitation rate, which could lead to a tendency for the ITCZ to broaden. The total AIE decreased the global annual mean precipitation rate by 0.055 mm df^-1.展开更多
Variational method is capable of dealing with observations that have a complicated nonlinear relation with model variables representative of the atmospheric state, and so make it possible to directly assimilate such m...Variational method is capable of dealing with observations that have a complicated nonlinear relation with model variables representative of the atmospheric state, and so make it possible to directly assimilate such measured variables as satellite radiance, which have a nonlinear relation with the model variables. Assimilation of any type of observations requires a corresponding observation operator, which establishes a specific mapping from the space of the model state to the space of observation. This paper presents in detail how the direct assimilation of real satellite radiance data is implemented in the GRAPES-3DVar analysis system. It focuses on all the components of the observation operator for direct assimilation of real satellite radiance data, including a spatial interpolation operator that transforms variables from model grid points to observation locations, a physical transformation from model variables to observed elements with different choices of model variables, and a data quality control. Assimilation experiments, using satellite radiances such as NOAA17 AMSU-A and AMSU-B (Advanced Microwave Sounding Unit), are carried out with two different schemes. The results from these experiments can be physically understood and clearly reflect a rational effect of direct assimilation of satellite radiance data in GRAPES-3DVar analysis system.展开更多
文摘There are large uncertainties in the quantitative assessment of radiative effects due to atmospheric dust aerosol. The optical properties contribute much to those uncertainties. The authors perform several sensitivity experiments to estimate the impacts of optical characteristics on regional radiative forcing in this paper. The experiments involve in refractive indices, single scattering aibedo, asymmetry factor and optical depth. An updated dataset of refractive indices representing East Asian dust and the one recommended by the World Meteorology Organization (WMO) are contrastively analyzed and used. A radiative transfer code for solar and thermal infrared radiation with detailed aerosol parameterization is employed. The strongest emphasis is on the refractive indices since other optical parameters strongly depend on it, and the authors found a strong sensitivity of radiative forcing on refractive indices. Studies show stronger scattering, weaker absorption and forward scattering of the East Asian dust particles at solar wavelengths, which leads to higher negative forcing, lower positive forcing and bigger net forcing at the top of the atmosphere (TOA) than that of the WMO dust model. It is also found that the TOA forcings resulting from these two dust models have opposite signs in certain regions, which implies the importance of accurate measurements of optical properties in the quantitative estimation of radiative forcing.
文摘A high resolution nonhydrostatic tropical atmospheric model is developed by using a ready-made regional atmospheric modeling system. The motivation is to investigate the convective activities associated with the tropical intraseasonal oscillation (ISO) through a cloud resolving calculation. Due to limitations in computing resources, a
基金financially supported by the National Basic Research Program of China(Grant No. 2006CB403707)the Public Meteorology Special Foundation of MOST (Grant Nos. GYHY200706036 and 2010CB955608), the National Key Technology R&D Program (Grant Nos. 2007BAC03A01 and 2008BAC40B02)
文摘Aerosol indirect effects (AIEs) on global climate were quantitatively investigated by introducing aerosol–cloud interaction parameterizations for water stratus clouds into an AGCM (BCC AGCM2.0.1), which was developed by the National Climate Center of the China Meteorological Administration. The study yielded a global annual mean of -1.14 W m^-2 for the first indirect radiative forcing (IRF), with an obvious seasonal change. In summer, large forcing mainly occurred in mid to high latitudes of the Northern Hemisphere, whereas in winter, large values were found at 60°S. The second indirect effect led to global annual mean changes in net shortwave flux of -1.03 W m^-2 at the top of the atmosphere (TOA), which was relatively significant in mid-latitude regions of both hemispheres. The total AIE reduced the global annual means of net shortwave flux at the TOA and of surface temperature by 1.93 W m^-2 and 0.12 K, respectively. Change in surface temperature induced by the total AIE was clearly larger in the Northern Hemisphere (-0.23 K) than in the Southern Hemisphere, where changes were negligible. The interhemispheric asymmetry in surface cooling resulted in significant differences in changes of the interhemispheric annual mean precipitation rate, which could lead to a tendency for the ITCZ to broaden. The total AIE decreased the global annual mean precipitation rate by 0.055 mm df^-1.
基金Key Technologies Research and Development Program (Grant No. 2001BA607B02)National Natural Science Foundation of China (Grant No. 40475042)
文摘Variational method is capable of dealing with observations that have a complicated nonlinear relation with model variables representative of the atmospheric state, and so make it possible to directly assimilate such measured variables as satellite radiance, which have a nonlinear relation with the model variables. Assimilation of any type of observations requires a corresponding observation operator, which establishes a specific mapping from the space of the model state to the space of observation. This paper presents in detail how the direct assimilation of real satellite radiance data is implemented in the GRAPES-3DVar analysis system. It focuses on all the components of the observation operator for direct assimilation of real satellite radiance data, including a spatial interpolation operator that transforms variables from model grid points to observation locations, a physical transformation from model variables to observed elements with different choices of model variables, and a data quality control. Assimilation experiments, using satellite radiances such as NOAA17 AMSU-A and AMSU-B (Advanced Microwave Sounding Unit), are carried out with two different schemes. The results from these experiments can be physically understood and clearly reflect a rational effect of direct assimilation of satellite radiance data in GRAPES-3DVar analysis system.