The emerging novel energy infrastructures,such as energy communities,smart building-based microgrids,electric vehicles enabled mobile energy storage units raise the requirements for a more interconnective and interope...The emerging novel energy infrastructures,such as energy communities,smart building-based microgrids,electric vehicles enabled mobile energy storage units raise the requirements for a more interconnective and interoperable energy system.It leads to a transition from simple and isolated microgrids to relatively large-scale and complex interconnected microgrid systems named multi-microgrid clusters.In order to efficiently,optimally,and flexibly control multi-microgrid clusters,cross-disciplinary technologies such as power electronics,control theory,optimization algorithms,information and communication technologies,cyber-physical,and big-data analysis are needed.This paper introduces an overview of the relevant aspects for multi-microgrids,including the out-standing features,architectures,typical applications,existing control mechanisms,as well as the challenges.展开更多
This paper introduces a novel fully distributed economic power dispatch(EPD)strategy for distribution networks,integrating dynamic tariffs.A two-layer model is proposed:the first layer comprises the physical power dis...This paper introduces a novel fully distributed economic power dispatch(EPD)strategy for distribution networks,integrating dynamic tariffs.A two-layer model is proposed:the first layer comprises the physical power distribution network,including photovoltaic(PV)sources,wind turbine(WT)generators,energy storage systems(ESS),flexible loads(FLs),and other inflexible loads.The upper layer consists of agents dedicated to communication,calculation,and control tasks.Unlike previous EPD strategies,this approach incorporates dynamic tariffs derived from voltage constraints to ensure compliance with nodal voltage constraints.Addi-tionally,a fast distributed optimization algorithm with an event-triggered communication protocol has been developed to address the EPD problem effectively.Through mathematical and simulation analyses,the proposed algorithm's efficiency and rapid conver-gence capability are demonstrated.展开更多
Since the high penetration of distributed energy sources complicates the dynamics of electrical power systems,accurate dynamic models are indispensable for study on the transient behavior of the microgrid(MG).In some ...Since the high penetration of distributed energy sources complicates the dynamics of electrical power systems,accurate dynamic models are indispensable for study on the transient behavior of the microgrid(MG).In some practices,the lack of full detailed information results in failure of dif-ferential equation based dynamic modeling,which leads to a demand for a black-box MG modeling method.It is a critical challenge to maintain the effectiveness of the black-box model under a wide operating range and various fault conditions.In this paper,inspired by the mathematical equivalence between the recurrent neural network(RNN)and differential-algebraic equations(DAEs),a dynamic equivalent modeling method,using long short-term memory(LSTM),is presented to tackle this challenge.At first,the modeling equivalence and advantages of our basic idea are explained.Then,modeling procedures,including data preparation and design guidelines,are presented.Finally,the proposed method is applied to a multi-microgrid testing system for performance evaluation.The results,under various scenarios,reveal that the proposed modeling method has an adequate capability for representing the dynamic behaviors of a black-box MG under grid fault and operating point changing conditions.Index Terms-Deep learning,dynamic behavior,dynamic equivalent model,microgrid,neural network.展开更多
Design and selection of advanced protection schemes have become essential for reliable and secure operation of networked microgrids.Various protection schemes that allow correct operation of microgrids have been propo...Design and selection of advanced protection schemes have become essential for reliable and secure operation of networked microgrids.Various protection schemes that allow correct operation of microgrids have been proposed for individual systems in different topologies and connections.Nevertheless,protection schemes for networked microgrids are still in devel-opment,and further research is required to design and operate advanced protection in interconnected systems.Interconnection of these microgrids in different nodes with various intercon-nection technologies increases fault occurrence and complicates protection operation.This paper aims to point out challenges in developing protection for networked microgrids,potential solutions,and research areas that need to be addressed for their development.First,this article presents a systematic analysis of different microgrid clusters proposed since 2016,including several architectures of networked microgrids,operation modes,components,and utilization of renewable sources,which have not been widely explored in previous review papers.Second,the paper presents a discussion on protection systems currently available for microgrid clusters,current challenges,and solutions that have been proposed for these systems.Finally,it discusses the trend of protection schemes in networked microgrids and presents some conclusions related to implementation.IndexTerms—Adaptive eprotection,microgrid cluster,microgrid,multiple microgrid,networked microgrid,real-time simulation,smart grid.展开更多
基金supported by VILLUM FONDEN under the VILLUM Investigator Grant(No.25920):Center for Research on Microgrids(CROM)www.crom.et.aau.dk。
文摘The emerging novel energy infrastructures,such as energy communities,smart building-based microgrids,electric vehicles enabled mobile energy storage units raise the requirements for a more interconnective and interoperable energy system.It leads to a transition from simple and isolated microgrids to relatively large-scale and complex interconnected microgrid systems named multi-microgrid clusters.In order to efficiently,optimally,and flexibly control multi-microgrid clusters,cross-disciplinary technologies such as power electronics,control theory,optimization algorithms,information and communication technologies,cyber-physical,and big-data analysis are needed.This paper introduces an overview of the relevant aspects for multi-microgrids,including the out-standing features,architectures,typical applications,existing control mechanisms,as well as the challenges.
文摘This paper introduces a novel fully distributed economic power dispatch(EPD)strategy for distribution networks,integrating dynamic tariffs.A two-layer model is proposed:the first layer comprises the physical power distribution network,including photovoltaic(PV)sources,wind turbine(WT)generators,energy storage systems(ESS),flexible loads(FLs),and other inflexible loads.The upper layer consists of agents dedicated to communication,calculation,and control tasks.Unlike previous EPD strategies,this approach incorporates dynamic tariffs derived from voltage constraints to ensure compliance with nodal voltage constraints.Addi-tionally,a fast distributed optimization algorithm with an event-triggered communication protocol has been developed to address the EPD problem effectively.Through mathematical and simulation analyses,the proposed algorithm's efficiency and rapid conver-gence capability are demonstrated.
基金supported in part by the Science Search Foundation of Liaoning Educational Department(No.LQGD2020002).
文摘Since the high penetration of distributed energy sources complicates the dynamics of electrical power systems,accurate dynamic models are indispensable for study on the transient behavior of the microgrid(MG).In some practices,the lack of full detailed information results in failure of dif-ferential equation based dynamic modeling,which leads to a demand for a black-box MG modeling method.It is a critical challenge to maintain the effectiveness of the black-box model under a wide operating range and various fault conditions.In this paper,inspired by the mathematical equivalence between the recurrent neural network(RNN)and differential-algebraic equations(DAEs),a dynamic equivalent modeling method,using long short-term memory(LSTM),is presented to tackle this challenge.At first,the modeling equivalence and advantages of our basic idea are explained.Then,modeling procedures,including data preparation and design guidelines,are presented.Finally,the proposed method is applied to a multi-microgrid testing system for performance evaluation.The results,under various scenarios,reveal that the proposed modeling method has an adequate capability for representing the dynamic behaviors of a black-box MG under grid fault and operating point changing conditions.Index Terms-Deep learning,dynamic behavior,dynamic equivalent model,microgrid,neural network.
基金supported by VILLUM FONDEN under the VILLUM Investigator Grant 25920:Center for Research on Microgrids(CROM).corresponding author:,email:jdlc@energy.aau.dk,ORCID:https://orcid.org/0000-0002-3423-6367。
文摘Design and selection of advanced protection schemes have become essential for reliable and secure operation of networked microgrids.Various protection schemes that allow correct operation of microgrids have been proposed for individual systems in different topologies and connections.Nevertheless,protection schemes for networked microgrids are still in devel-opment,and further research is required to design and operate advanced protection in interconnected systems.Interconnection of these microgrids in different nodes with various intercon-nection technologies increases fault occurrence and complicates protection operation.This paper aims to point out challenges in developing protection for networked microgrids,potential solutions,and research areas that need to be addressed for their development.First,this article presents a systematic analysis of different microgrid clusters proposed since 2016,including several architectures of networked microgrids,operation modes,components,and utilization of renewable sources,which have not been widely explored in previous review papers.Second,the paper presents a discussion on protection systems currently available for microgrid clusters,current challenges,and solutions that have been proposed for these systems.Finally,it discusses the trend of protection schemes in networked microgrids and presents some conclusions related to implementation.IndexTerms—Adaptive eprotection,microgrid cluster,microgrid,multiple microgrid,networked microgrid,real-time simulation,smart grid.