期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Bayesian Optimization for Field-Scale Geological Carbon Storage 被引量:1
1
作者 Xueying Lu Kirk E.Jordan +2 位作者 Mary F.Wheeler Edward O.Pyzer-Knapp Matthew Benatan 《Engineering》 SCIE EI CAS 2022年第11期96-104,共9页
We present a framework that couples a high-fidelity compositional reservoir simulator with Bayesian optimization(BO)for injection well scheduling optimization in geological carbon sequestration.This work represents on... We present a framework that couples a high-fidelity compositional reservoir simulator with Bayesian optimization(BO)for injection well scheduling optimization in geological carbon sequestration.This work represents one of the first at tempts to apply BO and high-fidelity physics models to geological carbon storage.The implicit parallel accurate reservoir simulator(IPARS)is utilized to accurately capture the underlying physical processes during CO_(2)sequestration.IPARS provides a framework for several flow and mechanics models and thus supports both stand-alone and coupled simulations.In this work,we use the compositional flow module to simulate the geological carbon storage process.The compositional flow model,which includes a hysteretic three-phase relative permeability model,accounts for three major CO_(2)trapping mechanisms:structural trapping,residual gas trapping,and solubility trapping.Furthermore,IPARS is coupled to the International Business Machines(IBM)Corporation Bayesian Optimization Accelerator(BOA)for parallel optimizations of CO_(2)injection strategies during field-scale CO_(2)sequestration.BO builds a probabilistic surrogate for the objective function using a Bayesian machine learning algorithm-the Gaussian process regression,and then uses an acquisition function that leverages the uncertainty in the surrogate to decide where to sample.The IBM BOA addresses the three weaknesses of standard BO that limits its scalability in that IBM BOA supports parallel(batch)executions,scales better for high-dimensional problems,and is more robust to initializations.We demonstrate these merits by applying the algorithm in the optimization of the CO_(2)injection schedule in the Cranfield site in Mississippi,USA,using field data.The optimized injection schedule achieves 16%more gas storage volume and 56%less water/surfactant usage compared with the baseline.The performance of BO is compared with that of a genetic algorithm(GA)and a covariance matrix adaptation(CMA)-evolution strategy(ES).The results demonstrate the superior performance of BO,in that it achieves a competitive objective function value with over 60%fewer forward model evaluations. 展开更多
关键词 Compositional flow Bayesian optimization Geological carbon storage CCUS Machine learning AI for science
下载PDF
构建地下水污染防护与修复管理中的综合决策系统(英文)
2
作者 Mingyu WANG 《地学前缘》 EI CAS CSCD 北大核心 2005年第U04期22-28,共7页
试图阐述如何对一个国家或地区在可持续发展国策下优化资金及人力配置,采取必要的防护和修复地下水污染的可行措施,从而最大限度减少由地下水污染对人类及生态可能产生的危害。提出了一个管理地下水污染防护与修复的综合决策系统框架。... 试图阐述如何对一个国家或地区在可持续发展国策下优化资金及人力配置,采取必要的防护和修复地下水污染的可行措施,从而最大限度减少由地下水污染对人类及生态可能产生的危害。提出了一个管理地下水污染防护与修复的综合决策系统框架。该系统框架的构筑是基于资金及人力的有限性、系统优化原理、地下水污染对人类及生态可能产生的危害,地下水防护与修复的难度或费用高低、地下水保护的效益与价值,以及同时考虑满足可持续发展要求。其中,由不同地下水污染防护与修复措施产生的地下水污染危害减少量构成了优化分析的目标函数。有限资金的最佳配置是通过使目标函数的最大化,并满足所有的管理、资源等限制条件加以确定的。还就执行该决策系统框架中所需完成的主要任务及步骤给予简述,并就几个相关的前沿性问题加以探讨。 展开更多
关键词 地下水污染 防护与修复 系统优化 决策系统 人类健康危害 生态危害
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部