We derive and numerically solve a surface active nematodynamics model.We validate the numerical approach on a sphere and analyse the influence of hydro-dynamics on the oscillatory motion of topological defects.For ell...We derive and numerically solve a surface active nematodynamics model.We validate the numerical approach on a sphere and analyse the influence of hydro-dynamics on the oscillatory motion of topological defects.For ellipsoidal surfaces the influence of geometric forces on these motion patterns is addressed by taking into ac-count the effects of intrinsic as well as extrinsic curvature contributions.The numerical experiments demonstrate the stronger coupling with geometric properties if extrinsic curvature contributions are present and provide a possibility to tuneflow and defect motion by surface properties.展开更多
基金financial support by DFG through FOR3013,computing resources provided by PFAMDIS at FZ Julich.
文摘We derive and numerically solve a surface active nematodynamics model.We validate the numerical approach on a sphere and analyse the influence of hydro-dynamics on the oscillatory motion of topological defects.For ellipsoidal surfaces the influence of geometric forces on these motion patterns is addressed by taking into ac-count the effects of intrinsic as well as extrinsic curvature contributions.The numerical experiments demonstrate the stronger coupling with geometric properties if extrinsic curvature contributions are present and provide a possibility to tuneflow and defect motion by surface properties.