Over the last decades,geo-structures are experiencing a rapid development in China.The potential risks inherent in the huge amount of construction and asset operation projects in China were well managed in the major p...Over the last decades,geo-structures are experiencing a rapid development in China.The potential risks inherent in the huge amount of construction and asset operation projects in China were well managed in the major project,i.e.the project of Shanghai Yangtze tunnel in 2002.Since then,risk assessment of geostructures has been gradually developed from a qualitative manner to a quantitative manner.However,the current practices of risk management have been paid considerable attention to the assessment,but little on risk control.As a result,the responses to risks occurrences after a comprehensive assessment are basically too late.In this paper,a smart system for risk sensing incorporating the wireless sensor network(WSN) on-site visualization techniques and the resilience-based repair strategy was proposed.The merit of this system is the real-time monitoring for geo-structural performance and dynamic pre-warning for safety of on-site workers.The sectional convergence,joint opening,and seepage of segmental lining of shield tunnel were monitored by the micro-electro-mechanical systems(MEMS) based sensors.The light emitting diode(LED) coupling with the above WSN system was used to indicate different risk levels on site.By sensing the risks and telling the risks in real time,the geo-risks could be controlled and the safety of geo-structures could be assured to a certain degree.Finally,a resilience-based analysis model was proposed for designing the repair strategy by using the measured data from the WSN system.The application and efficiency of this system have been validated by two cases including Shanghai metro tunnel and underwater road tunnel.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51278381,51538009 and 51608380)the International Research Cooperation Project of Shanghai Science and Technology Committee(Grant No.15220721600)the Peak Discipline Construction on Civil Engineering of Shanghai Project
文摘Over the last decades,geo-structures are experiencing a rapid development in China.The potential risks inherent in the huge amount of construction and asset operation projects in China were well managed in the major project,i.e.the project of Shanghai Yangtze tunnel in 2002.Since then,risk assessment of geostructures has been gradually developed from a qualitative manner to a quantitative manner.However,the current practices of risk management have been paid considerable attention to the assessment,but little on risk control.As a result,the responses to risks occurrences after a comprehensive assessment are basically too late.In this paper,a smart system for risk sensing incorporating the wireless sensor network(WSN) on-site visualization techniques and the resilience-based repair strategy was proposed.The merit of this system is the real-time monitoring for geo-structural performance and dynamic pre-warning for safety of on-site workers.The sectional convergence,joint opening,and seepage of segmental lining of shield tunnel were monitored by the micro-electro-mechanical systems(MEMS) based sensors.The light emitting diode(LED) coupling with the above WSN system was used to indicate different risk levels on site.By sensing the risks and telling the risks in real time,the geo-risks could be controlled and the safety of geo-structures could be assured to a certain degree.Finally,a resilience-based analysis model was proposed for designing the repair strategy by using the measured data from the WSN system.The application and efficiency of this system have been validated by two cases including Shanghai metro tunnel and underwater road tunnel.