The Hodgkin–Huxley model assumes independent ion channel activation,although mutual interactions are common in biological systems.This raises the problem why neurons would favor independent over cooperative channel a...The Hodgkin–Huxley model assumes independent ion channel activation,although mutual interactions are common in biological systems.This raises the problem why neurons would favor independent over cooperative channel activation.In this study,we evaluate how cooperative activation of sodium channels affects the neuron’s information processing and energy consumption.Simulations of the stochastic Hodgkin–Huxley model with cooperative activation of sodium channels show that,while cooperative activation enhances neuronal information processing capacity,it greatly increases the neuron’s energy consumption.As a result,cooperative activation of sodium channel degrades the energy efficiency for neuronal information processing.This discovery improves our understanding of the design principles for neural systems,and may provide insights into future designs of the neuromorphic computing devices as well as systematic understanding of pathological mechanisms for neural diseases.展开更多
The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictio...The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictions[Phys.Rev.A 72053604(2005)]and[arXiv:0706.1609]indicate the existence of a topological ordered phase characterized by Ising and XY disorder but with 2XY ordering.However,due to ergodic difficulties faced by Monte Carlo methods at low temperatures,this topological phase has not been numerically explored.We propose a linear cluster updating Monte Carlo method,which flips spins without rejection in the anisotropy limit but does not change the energy.Using this scheme and conventional Monte Carlo methods,we succeed in revealing the nature of topological phases with half-vortices and domain walls.In the constructed global phase diagram,Ising and XY-type transitions are very close to each other and differ significantly from the schematic phase diagram reported earlier.We also propose and explore a wide range of quantities,including magnetism,superfluidity,specific heat,susceptibility,and even percolation susceptibility,and obtain consistent and reliable results.Furthermore,we observed first-order transitions characterized by common intersection points in magnetizations for different system sizes,as opposed to the conventional phase transition where Binder cumulants of various sizes share common intersections.The critical exponents of different types of phase transitions are reasonably fitted.The results are useful to help cold atom experiments explore the half-vortex topological phase.展开更多
The exploration of exotic shapes and properties of atomic nuclei,e.g.,αcluster and toroidal shape,is a fascinating field in nuclear physics.To study the decay of these nuclei,a novel detector aimed at detecting multi...The exploration of exotic shapes and properties of atomic nuclei,e.g.,αcluster and toroidal shape,is a fascinating field in nuclear physics.To study the decay of these nuclei,a novel detector aimed at detecting multipleα-particle events was designed and constructed.The detector comprises two layers of double-sided silicon strip detectors(DSSD)and a cesium iodide scintillator array coupled with silicon photomultipliers array as light sensors,which has the advantages of their small size,fast response,and large dynamic range.DSSDs coupled with cesium iodide crystal arrays are used to distinguish multipleαhits.The detector array has a compact and integrated design that can be adapted to different experimental conditions.The detector array was simulated using Geant4,and the excitation energy spectra of someα-clustering nuclei were reconstructed to demonstrate the performance.The simulation results show that the detector array has excellent angular and energy resolutions,enabling effective reconstruction of the nuclear excited state by multipleαparticle events.This detector offers a new and powerful tool for nuclear physics experiments and has the potential to discover interesting physical phenomena related to exotic nuclear structures and their decay mechanisms.展开更多
Active target time projection chambers are state-of-the-art tools in the field of low-energy nuclear physics and are particularly suitable for experiments using low-intensity radioactive ion beams or gamma rays.The Fu...Active target time projection chambers are state-of-the-art tools in the field of low-energy nuclear physics and are particularly suitable for experiments using low-intensity radioactive ion beams or gamma rays.The Fudan multi-purpose active target time projection chamber(fMeta-TPC)with 2048 channels was developed to studyα-clustering nuclei.This study focused on the photonuclear reaction with a laser Compton scattering gamma source,particularly for the decay of the highly excitedαcluster state.The design of fMeta-TPC is described in this paper.A comprehensive evaluation of its offline performance was conducted using an ultraviolet laser and ^(241)Amαsource.The results showed that the intrinsic angular resolution of the detector was within 0.30°,and the detector had an energy resolution of 6.85%for 3.0 MeVαparticles.The gain uniformity of the detector was approximately 10%(RMS/Mean),as tested by the ^(55)Fe X-ray source.展开更多
A set of high resolution(25 km)21st century climate change projections using the regional climate model RegCM4 driven by four global model simulations were conducted over East Asia under the mid-range RCP4.5 scenario....A set of high resolution(25 km)21st century climate change projections using the regional climate model RegCM4 driven by four global model simulations were conducted over East Asia under the mid-range RCP4.5 scenario.In the present paper,the authors investigate the change in thermal comfort conditions over china based on an ensemble of the projections,using the index of effective temperature(ET),which considers the aggregate effects of temperature,relative humidity,and wind on human thermal perception.The analysis also accounts for exposure as measured by distributed population amount scenarios.The authors find that the general increase in ET leads to a large increase in population exposure to very hot days(a China-aggregated sixfold increase in‘person-days’by the end of the 21st century.There is a decrease in cool,cold,and very cold person-days.Meanwhile,a decrease in comfortable day conditions by 22%person-days is found despite an increase in climate-based comfortable days.Analysis of the different contributions to the changes(climate,population,and interactions between the two)show that climate effects play a more important role in the hot end of the thermal comfort categories,while the population effects tend to be dominant in the cold categories.Thus,overall,even a mid-level warming scenario is found to increase the thermal stress over China,although there is a strong geographical dependence.The inclusion of population exposure strongly modulates the climateonly signal,which highlights the need for including socioeconomic factors in the assessment of risks associated with climate change.展开更多
Metal halide perovskites have recently emerged as promising candidates for the next generation of X-ray detectors due to their excellent optoelectronic properties.Especially,two-dimensional(2D)perovskites afford many ...Metal halide perovskites have recently emerged as promising candidates for the next generation of X-ray detectors due to their excellent optoelectronic properties.Especially,two-dimensional(2D)perovskites afford many distinct properties,including remarkable structural diversity,high generation energy,and balanced large exciton binding energy.With the advantages of 2D materials and perovskites,it successfully reduces the decomposition and phase transition of perovskite and effectively suppresses ion migration.Meanwhile,the existence of a high hydrophobic spacer can block water molecules,thus making 2D perovskite obtain excellent stability.All of these advantages have attracted much attention in the field of X-ray detection.This review introduces the classification of 2D halide perovskites,summarizes the synthesis technology and performance characteristics of 2D perovskite X-ray direct detector,and briefly discusses the application of 2D perovskite in scintillators.Finally,this review also emphasizes the key challenges faced by 2D perovskite X-ray detectors in practical application and presents our views on its future development.展开更多
Although seemingly disparate,high-energy nuclear physics(HENP)and machine learning(ML)have begun to merge in the last few years,yielding interesting results.It is worthy to raise the profile of utilizing this novel mi...Although seemingly disparate,high-energy nuclear physics(HENP)and machine learning(ML)have begun to merge in the last few years,yielding interesting results.It is worthy to raise the profile of utilizing this novel mindset from ML in HENP,to help interested readers see the breadth of activities around this intersection.The aim of this mini-review is to inform the community of the current status and present an overview of the application of ML to HENP.From different aspects and using examples,we examine how scientific questions involving HENP can be answered using ML.展开更多
We discuss the Casimir force of Maxwell-Chern-Simons A belian gauge tield in different limits between twoparallel ideal conducting wires by using the Feynman path integral method.
Considering the R&D for upgrading the K^(0)_(L) andμdetectors in the Belle II experiment using a scintillator and silicon pho-tomultiplier(SiPM),we designed a compact high-speed and low-noise preamplifier.The pre...Considering the R&D for upgrading the K^(0)_(L) andμdetectors in the Belle II experiment using a scintillator and silicon pho-tomultiplier(SiPM),we designed a compact high-speed and low-noise preamplifier.The preamplifier demonstrated a good gain stability,bandwidth of 426 MHz,baseline noise level ofσ≈0.6 mV,dynamic range of up to170 mV of the input signal amplitude,good time resolution of 20 ps,and it can be comprehensively applied to SiPMs.Adopting pole-zero-cancelation in the preamplifier reduces both the rise and fall times of the SiPM signal,which can significantly improve the time resolution and reduce the pile-up when using a large SiPM or an array of SiPMs.Various combinations of the preamplifier and several types of SiPMs demonstrated time resolutions better than 50 ps for most cases;when the number of detected photons was larger than 60,a time resolution of approximately 25 ps was achieved.展开更多
Antiferromagnetic materials are exciting quantum materials with rich physics and great potential for applications.On the other hand, an accurate and efficient theoretical method is highly demanded for determining crit...Antiferromagnetic materials are exciting quantum materials with rich physics and great potential for applications.On the other hand, an accurate and efficient theoretical method is highly demanded for determining critical transition temperatures, Néel temperatures, of antiferromagnetic materials. The powerful graph neural networks(GNNs) that succeed in predicting material properties lose their advantage in predicting magnetic properties due to the small dataset of magnetic materials, while conventional machine learning models heavily depend on the quality of material descriptors. We propose a new strategy to extract high-level material representations by utilizing self-supervised training of GNNs on large-scale unlabeled datasets. According to the dimensional reduction analysis, we find that the learned knowledge about elements and magnetism transfers to the generated atomic vector representations. Compared with popular manually constructed descriptors and crystal graph convolutional neural networks, self-supervised material representations can help us to obtain a more accurate and efficient model for Néel temperatures, and the trained model can successfully predict high Néel temperature antiferromagnetic materials. Our self-supervised GNN may serve as a universal pre-training framework for various material properties.展开更多
Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the f...Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the first attempt at calculating the energy spectrum for this potential, which was introduced by H. Bahlouli and A. D. Alhaidari and for which they obtained the “potential parameter spectrum”. Our results are also independently verified using a direct method of diagonalizing the Hamiltonian matrix in the J-matrix basis.展开更多
The interaction kernel in the Bethe-Salpeter (B-S) equation for quark-antiquark bound states is derivedfrom B-S equations satisfied by the quark-antiquark four-point Green's function. The latter equations are esta...The interaction kernel in the Bethe-Salpeter (B-S) equation for quark-antiquark bound states is derivedfrom B-S equations satisfied by the quark-antiquark four-point Green's function. The latter equations are establishedbased on the equations of motion obeyed by the quark and antiquark propagators, the four-point Green's function andsome other kinds of Green's functions, which follow directly from the QCD generating functional. The derived B-Skernel is given by a closed and explicit expression which contains only a few types of Green's functions. This expressionis not only convenient for perturbative calculations, but also applicable for nonperturbative investigations. Since thekernel contains all the interactions taking place in the quark-antiquark bound states, it actually appears to be the mostsuitable starting point of studying the QCD nonperturbative effect and quark confinement.展开更多
The interaction kernel in the Bethe-Salpeter equation for quark-antiquark bound states is derived newly from QCD in the case where the quark and the antiquark are of different flavors. The technique of the derivation ...The interaction kernel in the Bethe-Salpeter equation for quark-antiquark bound states is derived newly from QCD in the case where the quark and the antiquark are of different flavors. The technique of the derivation is the usage of the irreducible decomposition of the Green's functions involved in the Bethe-Salpeter equation satisfied by the quark-antiquark four-point Green's function. The interaction kernel derived is given a closed and explicit expression which shows a specific structure of the kernel since the kernel is represented in terms of the quark, antiquark and gluon propagators and some kinds of quark, antiquark and/or gluon three, four, five and six-point vertices. Therefore,the expression of the kernel is not only convenient for perturbative calculations, but also suitable for nonperturbative investigations.展开更多
The possibility of stable or quasi-stable Planck mass black hole remnants as solution to the black hole information paradox is commonly believed phenomenologically unacceptable. Since we need a black hole remnant for ...The possibility of stable or quasi-stable Planck mass black hole remnants as solution to the black hole information paradox is commonly believed phenomenologically unacceptable. Since we need a black hole remnant for every possible initial state, the number of remnants is expected to be infinite and that would lead to remnant pair production in any physical process with a total available energy roughly exceeding the Planck mass. In this note I point out that a positive cosmological constant of the Universe would naturally lead to an upper bound on the number of possible remnants.展开更多
Starting from quantum chromodynamics,we find that aside from some terms that contribute only via the mixing of different Fock components,the baryon magnetic moment can be expressed as μB=[∑_(q)Q_(q)/(2<k0>_(q)...Starting from quantum chromodynamics,we find that aside from some terms that contribute only via the mixing of different Fock components,the baryon magnetic moment can be expressed as μB=[∑_(q)Q_(q)/(2<k0>_(q))](2S_(q)-2S_(q)+L_(q)-L_(q)),where<k0>q is the q flavor quarks average relativistic energy inside the baryon,and S_(q),L_(q),S_(q),L_(q) are quark and antiquark's relativistic spin and orbital contributions to baryon spin.We demonstrate that within an error of 1/6,this expression can be parameterized as ∑_(q)[Q_(q)/(2m^(eff)_(q))](2s_(q)-2s_(q)),(where s is the nonrelativistic Pauli spin contribution and m^(eff)_(q) is of the order of the constituent quark mass)which is just what the nonrelativistic constituent quark model adopts to give a good account of octet baryon magnetic moments.展开更多
Magnetization dynamics in uniformly magnetized ferromagnetic media is studied by using Landau-Lifshitz-Gilbert equation. The nonlinear evolution equation is integrable with site-dependent and biquadratic exchange inte...Magnetization dynamics in uniformly magnetized ferromagnetic media is studied by using Landau-Lifshitz-Gilbert equation. The nonlinear evolution equation is integrable with site-dependent and biquadratic exchange interaction by means of Landau-Lifshitz (LL) equation which is well understood. In the present work, we construct the exact solitary solutions of the nonlinear evolution equation, particularly, we employ the modified extended tangent hyperbolic function method. We show the shape changing property of solitons for the given integrable system in the presence of damping as well as inhomogeneities.展开更多
By using the Faddeev Senjanovic path integral quantization method, we quantize the composite fermions in quantum electrodynamics (QED). In the sense of Dirac's conjecture, we deduce all the constraints and give Di...By using the Faddeev Senjanovic path integral quantization method, we quantize the composite fermions in quantum electrodynamics (QED). In the sense of Dirac's conjecture, we deduce all the constraints and give Dirac's gauge transformations (DGT). According to that the effective action is invariant under the DGT, we obtain the Noether theorem at the quantum level, which shows the fractional charges for tile composite fermions in QBD. This result is better than the one deduced from the equations of motion for the statistical potentials, because this result contains both odd and even fractional numbers. Purthermore, we deduce the Noether theorem from the invariance of the effective action under the rotational transformations in 2-dimensional (x, y) plane. The result shows that the composite fermions have fractional spins and fractional statistics. These anomalous properties are given by the constraints for the statistical gauge potential.展开更多
Among many types of proteinaceous filaments, microtubules (MTs) constitute the most rigid components of the cellular cytoskeleton. Microtubule dynamics is essential for many vital cellular processes such as intracel...Among many types of proteinaceous filaments, microtubules (MTs) constitute the most rigid components of the cellular cytoskeleton. Microtubule dynamics is essential for many vital cellular processes such as intracellular transport, metabolism, and cell division. We investigate the nonlinear dynamics of inhomogeneous microtubulin systems and the MT dynamics is found to be governed by a perturbed sine-Gordon equation. In the presence of various competing nonlinear inhomogeneities, it is shown that this nonlinear model can lead to the existence of kink and antikink solitons moving along MTs. We demonstrate kink-antikink pair collision in the framework of Hirota's bilinearization method. We conjecture that the collisions of the quanta of energy propagating in the form of kinks and antikinks may offer a new view of the mechanism of the retrograde and anterograde transport direction regulation of motor proteins in microtubulin systems.展开更多
Ribonucleic acids(RNAs)play a vital role in biology,and knowledge of their three-dimensional(3D)structure is required to understand their biological functions.Recently structural prediction methods have been developed...Ribonucleic acids(RNAs)play a vital role in biology,and knowledge of their three-dimensional(3D)structure is required to understand their biological functions.Recently structural prediction methods have been developed to address this issue,but a series of RNA 3D structures are generally predicted by most existing methods.Therefore,the evaluation of the predicted structures is generally indispensable.Although several methods have been proposed to assess RNA 3D structures,the existing methods are not precise enough.In this work,a new all-atom knowledge-based potential is developed for more accurately evaluating RNA 3D structures.The potential not only includes local and nonlocal interactions but also fully considers the specificity of each RNA by introducing a retraining mechanism.Based on extensive test sets generated from independent methods,the proposed potential correctly distinguished the native state and ranked near-native conformations to effectively select the best.Furthermore,the proposed potential precisely captured RNA structural features such as base-stacking and base-pairing.Comparisons with existing potential methods show that the proposed potential is very reliable and accurate in RNA 3D structure evaluation.展开更多
The near-threshold e^(+)e^(-)→ΛΛ reaction is studied with the assumption that the production mechanism is due to a near-ΛΛ-threshold bound state. The cross section of the e^(+)e^(-)→ΛΛ reaction is parameterize...The near-threshold e^(+)e^(-)→ΛΛ reaction is studied with the assumption that the production mechanism is due to a near-ΛΛ-threshold bound state. The cross section of the e^(+)e^(-)→ΛΛ reaction is parameterized in terms of the electromagnetic form factors of Λ hyperon, which are obtained with the vector meson dominance model.It is shown that the contribution to the e^(+)e^(-)→ΛΛ reaction from a new narrow state with quantum numbersJ~(PC)= 1--is dominant for energies very close to threshold. The mass of this new state is around 2231 Me V,which is very close to the mass threshold of ΛΛ, while its width is just a few Me V. This gives a possible solution to the problem that all previous calculations seriously underestimated the near-threshold total cross section of the e^(+)e^(-)→ΛΛ reaction. We also note that the near-threshold enhancement can also be reproduced by including these well established vector resonances ω(1420), ω(1650), Φ(1680), or Φ(2170) with a Flatté form for their total decay width, and a strong coupling to the ΛΛ channel.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2021-62)the Shanghai Municipal Science and Technology Major Project(Grant No.2018SHZDZX01)Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence(LCNBI)and ZJLab,and the National Natural Science Foundation of China(Grant No.12247101).
文摘The Hodgkin–Huxley model assumes independent ion channel activation,although mutual interactions are common in biological systems.This raises the problem why neurons would favor independent over cooperative channel activation.In this study,we evaluate how cooperative activation of sodium channels affects the neuron’s information processing and energy consumption.Simulations of the stochastic Hodgkin–Huxley model with cooperative activation of sodium channels show that,while cooperative activation enhances neuronal information processing capacity,it greatly increases the neuron’s energy consumption.As a result,cooperative activation of sodium channel degrades the energy efficiency for neuronal information processing.This discovery improves our understanding of the design principles for neural systems,and may provide insights into future designs of the neuromorphic computing devices as well as systematic understanding of pathological mechanisms for neural diseases.
基金Project supported by the Hefei National Research Center for Physical Sciences at the Microscale (Grant No.KF2021002)the Natural Science Foundation of Shanxi Province,China (Grant Nos.202303021221029 and 202103021224051)+2 种基金the National Natural Science Foundation of China (Grant Nos.11975024,12047503,and 12275263)the Anhui Provincial Supporting Program for Excellent Young Talents in Colleges and Universities (Grant No.gxyq ZD2019023)the National Key Research and Development Program of China (Grant No.2018YFA0306501)。
文摘The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictions[Phys.Rev.A 72053604(2005)]and[arXiv:0706.1609]indicate the existence of a topological ordered phase characterized by Ising and XY disorder but with 2XY ordering.However,due to ergodic difficulties faced by Monte Carlo methods at low temperatures,this topological phase has not been numerically explored.We propose a linear cluster updating Monte Carlo method,which flips spins without rejection in the anisotropy limit but does not change the energy.Using this scheme and conventional Monte Carlo methods,we succeed in revealing the nature of topological phases with half-vortices and domain walls.In the constructed global phase diagram,Ising and XY-type transitions are very close to each other and differ significantly from the schematic phase diagram reported earlier.We also propose and explore a wide range of quantities,including magnetism,superfluidity,specific heat,susceptibility,and even percolation susceptibility,and obtain consistent and reliable results.Furthermore,we observed first-order transitions characterized by common intersection points in magnetizations for different system sizes,as opposed to the conventional phase transition where Binder cumulants of various sizes share common intersections.The critical exponents of different types of phase transitions are reasonably fitted.The results are useful to help cold atom experiments explore the half-vortex topological phase.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34030000)the National Key Research and Development Program of China(No.2022YFA1602404)+1 种基金National Natural Science Foundation(Nos.U1832129 and 11975210)Youth Innovation Promotion Association CAS(No.2017309)。
文摘The exploration of exotic shapes and properties of atomic nuclei,e.g.,αcluster and toroidal shape,is a fascinating field in nuclear physics.To study the decay of these nuclei,a novel detector aimed at detecting multipleα-particle events was designed and constructed.The detector comprises two layers of double-sided silicon strip detectors(DSSD)and a cesium iodide scintillator array coupled with silicon photomultipliers array as light sensors,which has the advantages of their small size,fast response,and large dynamic range.DSSDs coupled with cesium iodide crystal arrays are used to distinguish multipleαhits.The detector array has a compact and integrated design that can be adapted to different experimental conditions.The detector array was simulated using Geant4,and the excitation energy spectra of someα-clustering nuclei were reconstructed to demonstrate the performance.The simulation results show that the detector array has excellent angular and energy resolutions,enabling effective reconstruction of the nuclear excited state by multipleαparticle events.This detector offers a new and powerful tool for nuclear physics experiments and has the potential to discover interesting physical phenomena related to exotic nuclear structures and their decay mechanisms.
基金supported by the National Key R&D Program of China(Nos.2022YFA1602402,2020YFE0202001,2023YFA1606900)the National Natural Science Foundation of China(NSFC)(Nos.12235003,11835002,11925502,11705031,12275053,12147101).
文摘Active target time projection chambers are state-of-the-art tools in the field of low-energy nuclear physics and are particularly suitable for experiments using low-intensity radioactive ion beams or gamma rays.The Fudan multi-purpose active target time projection chamber(fMeta-TPC)with 2048 channels was developed to studyα-clustering nuclei.This study focused on the photonuclear reaction with a laser Compton scattering gamma source,particularly for the decay of the highly excitedαcluster state.The design of fMeta-TPC is described in this paper.A comprehensive evaluation of its offline performance was conducted using an ultraviolet laser and ^(241)Amαsource.The results showed that the intrinsic angular resolution of the detector was within 0.30°,and the detector had an energy resolution of 6.85%for 3.0 MeVαparticles.The gain uniformity of the detector was approximately 10%(RMS/Mean),as tested by the ^(55)Fe X-ray source.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFA0600704)the National Natural Science Foundation of China(Grant No.41375104)
文摘A set of high resolution(25 km)21st century climate change projections using the regional climate model RegCM4 driven by four global model simulations were conducted over East Asia under the mid-range RCP4.5 scenario.In the present paper,the authors investigate the change in thermal comfort conditions over china based on an ensemble of the projections,using the index of effective temperature(ET),which considers the aggregate effects of temperature,relative humidity,and wind on human thermal perception.The analysis also accounts for exposure as measured by distributed population amount scenarios.The authors find that the general increase in ET leads to a large increase in population exposure to very hot days(a China-aggregated sixfold increase in‘person-days’by the end of the 21st century.There is a decrease in cool,cold,and very cold person-days.Meanwhile,a decrease in comfortable day conditions by 22%person-days is found despite an increase in climate-based comfortable days.Analysis of the different contributions to the changes(climate,population,and interactions between the two)show that climate effects play a more important role in the hot end of the thermal comfort categories,while the population effects tend to be dominant in the cold categories.Thus,overall,even a mid-level warming scenario is found to increase the thermal stress over China,although there is a strong geographical dependence.The inclusion of population exposure strongly modulates the climateonly signal,which highlights the need for including socioeconomic factors in the assessment of risks associated with climate change.
基金This work was funded by the National Natural Science Foundation of China(22279049 and 12247101)the Fundamental Research Funds for the Central Universities(lzujbky-2021-it31,lzujbky-2021-ct15 and lzujbky-2021-sp69)+1 种基金the calculation work was supported by Supercomputing Center of Lanzhou Universitythe Gansu Province Outstanding Doctoral Student Program(22JR5RA435).
文摘Metal halide perovskites have recently emerged as promising candidates for the next generation of X-ray detectors due to their excellent optoelectronic properties.Especially,two-dimensional(2D)perovskites afford many distinct properties,including remarkable structural diversity,high generation energy,and balanced large exciton binding energy.With the advantages of 2D materials and perovskites,it successfully reduces the decomposition and phase transition of perovskite and effectively suppresses ion migration.Meanwhile,the existence of a high hydrophobic spacer can block water molecules,thus making 2D perovskite obtain excellent stability.All of these advantages have attracted much attention in the field of X-ray detection.This review introduces the classification of 2D halide perovskites,summarizes the synthesis technology and performance characteristics of 2D perovskite X-ray direct detector,and briefly discusses the application of 2D perovskite in scintillators.Finally,this review also emphasizes the key challenges faced by 2D perovskite X-ray detectors in practical application and presents our views on its future development.
基金supported in part by the National Natural Science Foundation of China under contract Nos.11890714,12147101(Ma),12075098(Pang),12247107,12075007(Song)the Germany BMBF under the ErUM-Data project(Zhou)the Guangdong Major Project of Basic and Applied Basic Research No.2020B0301030008(Ma).
文摘Although seemingly disparate,high-energy nuclear physics(HENP)and machine learning(ML)have begun to merge in the last few years,yielding interesting results.It is worthy to raise the profile of utilizing this novel mindset from ML in HENP,to help interested readers see the breadth of activities around this intersection.The aim of this mini-review is to inform the community of the current status and present an overview of the application of ML to HENP.From different aspects and using examples,we examine how scientific questions involving HENP can be answered using ML.
文摘We discuss the Casimir force of Maxwell-Chern-Simons A belian gauge tield in different limits between twoparallel ideal conducting wires by using the Feynman path integral method.
基金This work was partially supported by the National Key R&D Program of China(No.2022YFA1601903)the National Natural Science Foundation of China(Nos.11925502,11961141003,and 12175041)the Strategic Priority Research Program of the CAS(No.XDB34030000).
文摘Considering the R&D for upgrading the K^(0)_(L) andμdetectors in the Belle II experiment using a scintillator and silicon pho-tomultiplier(SiPM),we designed a compact high-speed and low-noise preamplifier.The preamplifier demonstrated a good gain stability,bandwidth of 426 MHz,baseline noise level ofσ≈0.6 mV,dynamic range of up to170 mV of the input signal amplitude,good time resolution of 20 ps,and it can be comprehensively applied to SiPMs.Adopting pole-zero-cancelation in the preamplifier reduces both the rise and fall times of the SiPM signal,which can significantly improve the time resolution and reduce the pile-up when using a large SiPM or an array of SiPMs.Various combinations of the preamplifier and several types of SiPMs demonstrated time resolutions better than 50 ps for most cases;when the number of detected photons was larger than 60,a time resolution of approximately 25 ps was achieved.
基金supported by the Scientific Research Program from Science and Technology Bureau of Chongqing City (Grant No. cstc2020jcyj-msxm X0684)the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202000639)in part by the National Natural Science Foundation of China (Grant No. 12147102)
文摘Antiferromagnetic materials are exciting quantum materials with rich physics and great potential for applications.On the other hand, an accurate and efficient theoretical method is highly demanded for determining critical transition temperatures, Néel temperatures, of antiferromagnetic materials. The powerful graph neural networks(GNNs) that succeed in predicting material properties lose their advantage in predicting magnetic properties due to the small dataset of magnetic materials, while conventional machine learning models heavily depend on the quality of material descriptors. We propose a new strategy to extract high-level material representations by utilizing self-supervised training of GNNs on large-scale unlabeled datasets. According to the dimensional reduction analysis, we find that the learned knowledge about elements and magnetism transfers to the generated atomic vector representations. Compared with popular manually constructed descriptors and crystal graph convolutional neural networks, self-supervised material representations can help us to obtain a more accurate and efficient model for Néel temperatures, and the trained model can successfully predict high Néel temperature antiferromagnetic materials. Our self-supervised GNN may serve as a universal pre-training framework for various material properties.
文摘Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the first attempt at calculating the energy spectrum for this potential, which was introduced by H. Bahlouli and A. D. Alhaidari and for which they obtained the “potential parameter spectrum”. Our results are also independently verified using a direct method of diagonalizing the Hamiltonian matrix in the J-matrix basis.
基金国家自然科学基金,the Research Fund for the Doctoral Program of Higher Education of China
文摘The interaction kernel in the Bethe-Salpeter (B-S) equation for quark-antiquark bound states is derivedfrom B-S equations satisfied by the quark-antiquark four-point Green's function. The latter equations are establishedbased on the equations of motion obeyed by the quark and antiquark propagators, the four-point Green's function andsome other kinds of Green's functions, which follow directly from the QCD generating functional. The derived B-Skernel is given by a closed and explicit expression which contains only a few types of Green's functions. This expressionis not only convenient for perturbative calculations, but also applicable for nonperturbative investigations. Since thekernel contains all the interactions taking place in the quark-antiquark bound states, it actually appears to be the mostsuitable starting point of studying the QCD nonperturbative effect and quark confinement.
文摘The interaction kernel in the Bethe-Salpeter equation for quark-antiquark bound states is derived newly from QCD in the case where the quark and the antiquark are of different flavors. The technique of the derivation is the usage of the irreducible decomposition of the Green's functions involved in the Bethe-Salpeter equation satisfied by the quark-antiquark four-point Green's function. The interaction kernel derived is given a closed and explicit expression which shows a specific structure of the kernel since the kernel is represented in terms of the quark, antiquark and gluon propagators and some kinds of quark, antiquark and/or gluon three, four, five and six-point vertices. Therefore,the expression of the kernel is not only convenient for perturbative calculations, but also suitable for nonperturbative investigations.
基金supported in part by NSF under Grant No.PHY-0547794DOE under Grant No.DE-FG02-96ER41005
文摘The possibility of stable or quasi-stable Planck mass black hole remnants as solution to the black hole information paradox is commonly believed phenomenologically unacceptable. Since we need a black hole remnant for every possible initial state, the number of remnants is expected to be infinite and that would lead to remnant pair production in any physical process with a total available energy roughly exceeding the Planck mass. In this note I point out that a positive cosmological constant of the Universe would naturally lead to an upper bound on the number of possible remnants.
基金Supported by the National Natural Science Foundation of China under Grant No.19675018.
文摘Starting from quantum chromodynamics,we find that aside from some terms that contribute only via the mixing of different Fock components,the baryon magnetic moment can be expressed as μB=[∑_(q)Q_(q)/(2<k0>_(q))](2S_(q)-2S_(q)+L_(q)-L_(q)),where<k0>q is the q flavor quarks average relativistic energy inside the baryon,and S_(q),L_(q),S_(q),L_(q) are quark and antiquark's relativistic spin and orbital contributions to baryon spin.We demonstrate that within an error of 1/6,this expression can be parameterized as ∑_(q)[Q_(q)/(2m^(eff)_(q))](2s_(q)-2s_(q)),(where s is the nonrelativistic Pauli spin contribution and m^(eff)_(q) is of the order of the constituent quark mass)which is just what the nonrelativistic constituent quark model adopts to give a good account of octet baryon magnetic moments.
基金the financial support by UGC,NBHM,India in the form of major research projectsBRNS in the form of Young Scientist Research Award,India+1 种基金the financial support from Periyar University,India in the form of University Research FellowshipJawaharlal Nehru Memorial Fund for providing funding for the doctoral study
文摘Magnetization dynamics in uniformly magnetized ferromagnetic media is studied by using Landau-Lifshitz-Gilbert equation. The nonlinear evolution equation is integrable with site-dependent and biquadratic exchange interaction by means of Landau-Lifshitz (LL) equation which is well understood. In the present work, we construct the exact solitary solutions of the nonlinear evolution equation, particularly, we employ the modified extended tangent hyperbolic function method. We show the shape changing property of solitons for the given integrable system in the presence of damping as well as inhomogeneities.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11047020 and 11047173)the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2011AM019, ZR2010AQ025, BS2010DS006, and Y200814)the Scientific and Technological Development Project of Shandong Province, China (Grant No. J08LI56)
文摘By using the Faddeev Senjanovic path integral quantization method, we quantize the composite fermions in quantum electrodynamics (QED). In the sense of Dirac's conjecture, we deduce all the constraints and give Dirac's gauge transformations (DGT). According to that the effective action is invariant under the DGT, we obtain the Noether theorem at the quantum level, which shows the fractional charges for tile composite fermions in QBD. This result is better than the one deduced from the equations of motion for the statistical potentials, because this result contains both odd and even fractional numbers. Purthermore, we deduce the Noether theorem from the invariance of the effective action under the rotational transformations in 2-dimensional (x, y) plane. The result shows that the composite fermions have fractional spins and fractional statistics. These anomalous properties are given by the constraints for the statistical gauge potential.
基金supported by the Serbian Ministry of Education and Sciences(Grant No.Ⅲ45010)the URF from Periyar University,India+4 种基金the research award of UGCthe major research project of NBHM,Indiathe Young Scientist Research Award of BRNS,Indiathe Junior Associateship of ICTP,Italythe Rajiv Gandhi National Fellowship of UGC
文摘Among many types of proteinaceous filaments, microtubules (MTs) constitute the most rigid components of the cellular cytoskeleton. Microtubule dynamics is essential for many vital cellular processes such as intracellular transport, metabolism, and cell division. We investigate the nonlinear dynamics of inhomogeneous microtubulin systems and the MT dynamics is found to be governed by a perturbed sine-Gordon equation. In the presence of various competing nonlinear inhomogeneities, it is shown that this nonlinear model can lead to the existence of kink and antikink solitons moving along MTs. We demonstrate kink-antikink pair collision in the framework of Hirota's bilinearization method. We conjecture that the collisions of the quanta of energy propagating in the form of kinks and antikinks may offer a new view of the mechanism of the retrograde and anterograde transport direction regulation of motor proteins in microtubulin systems.
基金Project supported by the National Science Foundation of China(Grants Nos.11605125,11105054,11274124,and 11401448)
文摘Ribonucleic acids(RNAs)play a vital role in biology,and knowledge of their three-dimensional(3D)structure is required to understand their biological functions.Recently structural prediction methods have been developed to address this issue,but a series of RNA 3D structures are generally predicted by most existing methods.Therefore,the evaluation of the predicted structures is generally indispensable.Although several methods have been proposed to assess RNA 3D structures,the existing methods are not precise enough.In this work,a new all-atom knowledge-based potential is developed for more accurately evaluating RNA 3D structures.The potential not only includes local and nonlocal interactions but also fully considers the specificity of each RNA by introducing a retraining mechanism.Based on extensive test sets generated from independent methods,the proposed potential correctly distinguished the native state and ranked near-native conformations to effectively select the best.Furthermore,the proposed potential precisely captured RNA structural features such as base-stacking and base-pairing.Comparisons with existing potential methods show that the proposed potential is very reliable and accurate in RNA 3D structure evaluation.
基金partly supported by the National Natural Science Foundation of China (Grant Nos. 12075288, 11735003, and 11961141012)supported by the Youth Innovation Promotion Association CAS。
文摘The near-threshold e^(+)e^(-)→ΛΛ reaction is studied with the assumption that the production mechanism is due to a near-ΛΛ-threshold bound state. The cross section of the e^(+)e^(-)→ΛΛ reaction is parameterized in terms of the electromagnetic form factors of Λ hyperon, which are obtained with the vector meson dominance model.It is shown that the contribution to the e^(+)e^(-)→ΛΛ reaction from a new narrow state with quantum numbersJ~(PC)= 1--is dominant for energies very close to threshold. The mass of this new state is around 2231 Me V,which is very close to the mass threshold of ΛΛ, while its width is just a few Me V. This gives a possible solution to the problem that all previous calculations seriously underestimated the near-threshold total cross section of the e^(+)e^(-)→ΛΛ reaction. We also note that the near-threshold enhancement can also be reproduced by including these well established vector resonances ω(1420), ω(1650), Φ(1680), or Φ(2170) with a Flatté form for their total decay width, and a strong coupling to the ΛΛ channel.