期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
不相交主成分分析(PCA)和遗传算法(GA)用于差异表达基因的识别 被引量:1
1
作者 苏振强 HONG Hui—Xiao +3 位作者 TONG Wei-Da PERKINS Roger 邵学广 蔡文生 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2007年第9期1640-1644,共5页
建立了一种基于不相交主成分分析(Disjoint PCA)和遗传算法(GA)的特征变量选择方法,并用于从基因表达谱(Gene expression profiles)数据中识别差异表达的基因.在该方法中,用不相交主成分分析评估基因组在区分两类不同样品时的区分能力;... 建立了一种基于不相交主成分分析(Disjoint PCA)和遗传算法(GA)的特征变量选择方法,并用于从基因表达谱(Gene expression profiles)数据中识别差异表达的基因.在该方法中,用不相交主成分分析评估基因组在区分两类不同样品时的区分能力;用GA寻找区分能力最强的基因组;所识别基因的偶然相关性用统计方法评估.由于该方法考虑了基因间的协同作用更接近于基因的生物过程,从而使所识别的基因具有更好的差异表达能力.将该方法应用于肝细胞癌(HCC)样品的基因芯片数据分析,结果表明,所识别的基因具有较强的区分能力,优于常用的基因芯片显著性分析(Significance analysis of microarrays,SAM)方法. 展开更多
关键词 基因芯片 主成分分析(PCA) 遗传算法(GA) 基因芯片显著性分析(SAM) 偶然相关
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部