期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
1
作者 Zheqi Liu Zhen Zhang +7 位作者 Yu Zhang Wenkai Zhou Xu Zhang Canbang Peng Tong Ji Xin Zou Zhiyuan Zhang Zhenhu Ren 《International Journal of Oral Science》 SCIE CAS CSCD 2024年第1期110-121,共12页
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment. Oral squamous cell carcinoma (OSCC), a representative hypoxic tumor, has a heterogeneous internal metabolic enviro... Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment. Oral squamous cell carcinoma (OSCC), a representative hypoxic tumor, has a heterogeneous internal metabolic environment. To clarify the relationship between different metabolic regions and the tumor immune microenvironment (TME) in OSCC, Single cell (SC) and spatial transcriptomics (ST) sequencing of OSCC tissues were performed. The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data. The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-, normal-, or hypometabolic regions. CD4T cell infiltration and TGF-βexpression is higher in the hypermetabolic regions than in the others. Through CellPhoneDB and NicheNet cell-cell communication analysis, it was found that in the hypermetabolic region, fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts (iCAFs), and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12. The secretion of CXCL12 recruits regulatory T cells (Tregs), leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment. This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC, ST and TCGA bulk data, and highlights potential targets for therapy. 展开更多
关键词 CXCL12 MICROENVIRONMENT SQUAMOUS
下载PDF
Improvement of bone formation by bionic hydroxyapatite nanorod via the regulation of macrophage polarization 被引量:1
2
作者 Da-Wang Zhao Ming-Zhi Yu +6 位作者 Yi-Xiang Zhao Rui Hu Peng-Cheng Xu Zhao-Yang Sun Kai Bian Chao Liu Lei Cheng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第5期109-120,共12页
Bone defects are common clinical problems in the world,and there are many biomaterials used for treat-ing them.However,there is still a paucity of bioactive materials capable of modulating the immune mi-croenvironment... Bone defects are common clinical problems in the world,and there are many biomaterials used for treat-ing them.However,there is still a paucity of bioactive materials capable of modulating the immune mi-croenvironment.Therefore,it is necessary to identify new therapeutic strategies to regulate the immune microenvironment of the bone defect to further promote osteogenesis.Hydroxyapatite(HAP)is an impor-tant mineral for the framework of the human body.Recently,HAP has become a key research object for bone tissue engineering applications due to its unique tailored properties and similarity to bone tissue.Here,we prepared rod-shaped HAP(rHAP)with different concentrations(0,100,200,and 300μg/mL).The slowly released Ca^(2+)of 200μg/mL rHAP can induce macrophage phenotype 2(M2)polarization to decrease inflammatory cytokine secretion via the PI3K-Akt and Wnt/β-catenin pathways.In addition,rHAP can induce osteogenesis through the osteogenic differentiation of rat bone marrow mesenchymal stem cells.In conclusion,the 200μg/mL rHAP shows the potential for osteoimmunomodulation in a bone defect in vitro and in vivo,which is beneficial to the treatment of bone defects. 展开更多
关键词 Hydroxyapatite nanorods Macrophage polarization Osteoimmunomodulation Calcium ions-related signaling pathway
原文传递
MST4 kinase regulates immune thrombocytopenia by phosphorylating STAT1-mediated M1 polarization of macrophages
3
作者 Jingjing Cao Lili Ji +13 位作者 Yanxia Zhan Xia Shao Pengcheng Xu Boting Wu Pu Chen Luya Cheng Xibing Zhuang Yang Ou Fanli Hua Lihua Sun Feng Li Hao Chen Zhaocai Zhou Yunfeng Cheng 《Cellular & Molecular Immunology》 SCIE CAS CSCD 2023年第12期1413-1427,共15页
Primary immune thrombocytopenia(ITP)is an autoimmune hemorrhagic disorder in which macrophages play a critical role.Mammalian sterile-20-like kinase 4(MST4),a member of the germinal-center kinase STE20 family,has been... Primary immune thrombocytopenia(ITP)is an autoimmune hemorrhagic disorder in which macrophages play a critical role.Mammalian sterile-20-like kinase 4(MST4),a member of the germinal-center kinase STE20 family,has been demonstrated to be a regulator of inflammation.Whether MST4 participates in the macrophage-dependent inflammation of ITP remains elusive.The expression and function of MST4 in macrophages of ITP patients and THP-1 cells,and of a macrophage-specific Mst4−/−(Mst4ΔM/ΔM)ITP mouse model were determined.Macrophage phagocytic assays,RNA sequencing(RNA-seq)analysis,immunofluorescence analysis,coimmunoprecipitation(co-IP),mass spectrometry(MS),bioinformatics analysis,and phosphoproteomics analysis were performed to reveal the underlying mechanisms.The expression levels of the MST4 gene were elevated in the expanded M1-like macrophages of ITP patients,and this elevated expression of MST4 was restored to basal levels in patients with remission after high-dose dexamethasone treatment.The expression of the MST4 gene was significantly elevated in THP-1-derived M1 macrophages.Silencing of MST4 decreased the expression of M1 macrophage markers and cytokines,and impaired phagocytosis,which could be increased by overexpression of MST4.In a passive ITP mouse model,macrophage-specific depletion of Mst4 reduced the numbers of M1 macrophages in the spleen and peritoneal lavage fluid,attenuated the expression of M1 cytokines,and promoted the predominance of FcγRIIb in splenic macrophages,which resulted in amelioration of thrombocytopenia.Downregulation of MST4 directly inhibited STAT1 phosphorylation,which is essential for M1 polarization of macrophages.Our study elucidates a critical role for MST4 kinase in the pathology of ITP and identifies MST4 kinase as a potential therapeutic target for refractory ITP. 展开更多
关键词 Primary immune thrombocytopenia Mammalian sterile-20-like kinase 4(MST4) MACROPHAGES M1 polarization Signal transducer and activator of transcription-1(STAT1)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部