Phosphate tailings are usually used as backfill material in order to recycle tailings resources.This study considers the effect of the mix proportions of clinker-free binders on the fluidity,compressive strength and o...Phosphate tailings are usually used as backfill material in order to recycle tailings resources.This study considers the effect of the mix proportions of clinker-free binders on the fluidity,compressive strength and other key performances of cementitious backfill materials based on phosphate tailings.In particular,three solid wastes,phosphogypsum(PG),semi-aqueous phosphogypsum(HPG)and calcium carbide slag(CS),were selected to activate wet ground granulated blast furnace slag(WGGBS)and three different phosphate tailings backfill materials were prepared.Fluidity,rheology,settling ratio,compressive strength,water resistance and ion leaching behavior of backfill materials were determined.According to the results,when either PG or HPG is used as the sole activator,the fluidity properties of the materials are enhanced.Phosphate tailings backfill material activated with PG present the largest fluidity and the lowest yield stress.Furthermore,the backfill material’s compressive strength is considerably increased to 2.9 MPa at 28 days after WGGBS activation using a mix of HPG and CS,all with a settling ratio of only 1.15 percent.Additionally,all the three ratios of binder have obvious solidification effects on heavy metal ions Cu and Zn,and P in phosphate tailings.展开更多
The phosphorus slag(PS) can be used as a supplementary cementitious material due to its potential hydrating activity. However, its usage has been limited by its adverse effects, including prolonged setting and lower...The phosphorus slag(PS) can be used as a supplementary cementitious material due to its potential hydrating activity. However, its usage has been limited by its adverse effects, including prolonged setting and lowered early-stage strength. In this study, we achieved ultrafine granulation of PS using wetmilling(reducing d50 to as low as 2.02 μm) in order to increase its activity, and examined the physico-chemical properties of the resulting materials, including particle-size distribution, slurry pH, zeta potential, and activity index, as well as how their replacement level and granularity affect the setting time and mechanical performance of PS-cement mixture systems. The results suggested that as the granularity increases, there are significant boosts in the uniformity of particle sizes, slurry pH, and activity index, and the effects on cement paste, including setting times, and early-and late-stage strengths, are significantly mitigated. When d(50)=2.02 μm, the slurry becomes strongly alkaline(pH=12.16) compared to the initial d(50)=20.75 μm(pH=9.49), and the activity is increased by 73%; when used at 40% replacement, the PS-cement mixture system can reach a 28 d compressive strength of 93.2 MPa, 36% higher than that of the pure cement control group.展开更多
基金the Key Research and Development Program of Hubei Province(2022BCA071)the Wuhan Science and Technology Bureau(2022020801020269).
文摘Phosphate tailings are usually used as backfill material in order to recycle tailings resources.This study considers the effect of the mix proportions of clinker-free binders on the fluidity,compressive strength and other key performances of cementitious backfill materials based on phosphate tailings.In particular,three solid wastes,phosphogypsum(PG),semi-aqueous phosphogypsum(HPG)and calcium carbide slag(CS),were selected to activate wet ground granulated blast furnace slag(WGGBS)and three different phosphate tailings backfill materials were prepared.Fluidity,rheology,settling ratio,compressive strength,water resistance and ion leaching behavior of backfill materials were determined.According to the results,when either PG or HPG is used as the sole activator,the fluidity properties of the materials are enhanced.Phosphate tailings backfill material activated with PG present the largest fluidity and the lowest yield stress.Furthermore,the backfill material’s compressive strength is considerably increased to 2.9 MPa at 28 days after WGGBS activation using a mix of HPG and CS,all with a settling ratio of only 1.15 percent.Additionally,all the three ratios of binder have obvious solidification effects on heavy metal ions Cu and Zn,and P in phosphate tailings.
基金Funded by National Natural Science Foundation of China(No.51372076)the Technology Innovation Major Project of Hubei Province(No.2017ACA178)the Science and Technology Support Program of Hubei Province(No.2015BCA244)
文摘The phosphorus slag(PS) can be used as a supplementary cementitious material due to its potential hydrating activity. However, its usage has been limited by its adverse effects, including prolonged setting and lowered early-stage strength. In this study, we achieved ultrafine granulation of PS using wetmilling(reducing d50 to as low as 2.02 μm) in order to increase its activity, and examined the physico-chemical properties of the resulting materials, including particle-size distribution, slurry pH, zeta potential, and activity index, as well as how their replacement level and granularity affect the setting time and mechanical performance of PS-cement mixture systems. The results suggested that as the granularity increases, there are significant boosts in the uniformity of particle sizes, slurry pH, and activity index, and the effects on cement paste, including setting times, and early-and late-stage strengths, are significantly mitigated. When d(50)=2.02 μm, the slurry becomes strongly alkaline(pH=12.16) compared to the initial d(50)=20.75 μm(pH=9.49), and the activity is increased by 73%; when used at 40% replacement, the PS-cement mixture system can reach a 28 d compressive strength of 93.2 MPa, 36% higher than that of the pure cement control group.