In recent years, adenosine tri-phosphate (ATP) has been reported to exist in apoplasts of plant cells as a signal molecule. Extracellular ATP (eATP) plays important roles in plant growth, development, and stress t...In recent years, adenosine tri-phosphate (ATP) has been reported to exist in apoplasts of plant cells as a signal molecule. Extracellular ATP (eATP) plays important roles in plant growth, development, and stress tolerance. Here, extra- cellular ATP was found to promote stomatal opening of Arabidopsis thaliana in light and darkness. ADP, GTP, and weakly hydrolyzable ATP analogs (ATPγS, Bz-ATP, and 2meATP) showed similar effects, whereas AMP and adenosine did not affect stomatal movement. Apyrase inhibited stomatal opening. ATP-promoted stomatal opening was blocked by an NADPH oxidase inhibitor (diphenylene iodonium) or deoxidizer (dithiothreitol), and was impaired in null mutant of NADPH ox- idase (atrbohD/F). Added ATP triggered ROS generation in guard cells via NADPH oxidase. ATP also induced Ca^2+ influx and H + efflux in guard cells. In atrbohD/F, ATP-induced ion flux was strongly suppressed. In null mutants of the heterotrimeric G protein α subunit, ATP-promoted stomatal opening, cytoplasmic ROS generation, Ca^2+ influx, and ^H+ efflux were all sup- pressed. These results indicated that eATP-promoted stomatal opening possibly involves the heterotrimeric G protein, ROS, cytosolic Ca^2+, and plasma membrane H+-ATPase.展开更多
Seed germination and seedling establishment are important for the reproductive success of plants,but seeds and seedlings typically encounter constantly changing environmental conditions.By inhibiting seed germination ...Seed germination and seedling establishment are important for the reproductive success of plants,but seeds and seedlings typically encounter constantly changing environmental conditions.By inhibiting seed germination and post-germinative growth through the PYR1/PYL/RCAR ABA receptors and PP2C co-receptors,the phytohormone abscisic acid(ABA)prevents premature germination and seedling growth under unfavorable conditions.However,little is known about how the ABA-mediated inhibition of seed germination and seedling establishment is thwarted.Here,we report that ABA Signaling Terminator(ABT),a WD40 protein,efficiently switches off ABA signaling and is critical for seed germination and seedling establishment.ABT is induced by ABA in a PYR1/PYL/RCAR-PP2C-dependent manner.Overexpression of ABT promotes seed germination and seedling greening in the presence of ABA,whereas knockout of ABT has the opposite effect.We found that ABT interacts with the PYR1/PYL/RCAR and PP2C proteins,interferes with the interaction between PYR1/PYL4 and ABI1/ABI2,and hampers the inhibition of ABI1/ABI2 by ABA-bound PYR1/PYL4,thereby terminating ABA signaling.Taken together,our results reveal a core mechanism of ABA signaling termination that is critical for seed germination and seedling establishment in Arabidopsis.展开更多
Soil salinity is a growing problem around the world with special relevance in farmlands. The ability to sense and respond to environmental stimuli is among the most fundamental processes that enable plants to survive....Soil salinity is a growing problem around the world with special relevance in farmlands. The ability to sense and respond to environmental stimuli is among the most fundamental processes that enable plants to survive. At the cellular level, the Salt Overly Sensitive (SOS) signaling pathway that comprises SOS3, SOS2, and SOS1 has been proposed to mediate cellular signaling under salt stress, to maintain ion homeostasis. Less well known is how cellularly heterog- enous organs couple the salt signals to homeostasis maintenance of different types of cells and to appropriate growth of the entire organ and plant. Recent evidence strongly indicates that different regulatory mechanisms are adopted by roots and shoots in response to salt stress. Several reports have stated that, in roots, the SOS proteins may have novel roles in addition to their functions in sodium homeostasis. SOS3 plays a critical role in plastic development of lateral roots through modulation of auxin gradients and maxima in roots under mild salt conditions. The SOS proteins also play a role in the dynamics of cytoskeleton under stress. These results imply a high complexity of the regulatory networks involved in plant response to salinity. This review focuses on the emerging complexity of the SOS signaling and SOS protein functions, and highlights recent understanding on how the SOS proteins contribute to different responses to salt stress besides ion homeostasis.展开更多
基金This work was supported by the National Science Foundation of China,the Program for New Century Excellent Talents in University,the State Key Laboratory of Plant Cell and Chromosome Engineering,No conflict of interest declared
文摘In recent years, adenosine tri-phosphate (ATP) has been reported to exist in apoplasts of plant cells as a signal molecule. Extracellular ATP (eATP) plays important roles in plant growth, development, and stress tolerance. Here, extra- cellular ATP was found to promote stomatal opening of Arabidopsis thaliana in light and darkness. ADP, GTP, and weakly hydrolyzable ATP analogs (ATPγS, Bz-ATP, and 2meATP) showed similar effects, whereas AMP and adenosine did not affect stomatal movement. Apyrase inhibited stomatal opening. ATP-promoted stomatal opening was blocked by an NADPH oxidase inhibitor (diphenylene iodonium) or deoxidizer (dithiothreitol), and was impaired in null mutant of NADPH ox- idase (atrbohD/F). Added ATP triggered ROS generation in guard cells via NADPH oxidase. ATP also induced Ca^2+ influx and H + efflux in guard cells. In atrbohD/F, ATP-induced ion flux was strongly suppressed. In null mutants of the heterotrimeric G protein α subunit, ATP-promoted stomatal opening, cytoplasmic ROS generation, Ca^2+ influx, and ^H+ efflux were all sup- pressed. These results indicated that eATP-promoted stomatal opening possibly involves the heterotrimeric G protein, ROS, cytosolic Ca^2+, and plasma membrane H+-ATPase.
基金supported by the National Key Research and Development Program of China(2016YFA0500503)the Fundamental Research Funds for the Central Universities(2662018PY075)+1 种基金the National Natural Science Foundation of China(31730066,91540112)the Huazhong Agricultural University's Scientific and Technological Self-innovation Foundation(2015RC014).
文摘Seed germination and seedling establishment are important for the reproductive success of plants,but seeds and seedlings typically encounter constantly changing environmental conditions.By inhibiting seed germination and post-germinative growth through the PYR1/PYL/RCAR ABA receptors and PP2C co-receptors,the phytohormone abscisic acid(ABA)prevents premature germination and seedling growth under unfavorable conditions.However,little is known about how the ABA-mediated inhibition of seed germination and seedling establishment is thwarted.Here,we report that ABA Signaling Terminator(ABT),a WD40 protein,efficiently switches off ABA signaling and is critical for seed germination and seedling establishment.ABT is induced by ABA in a PYR1/PYL/RCAR-PP2C-dependent manner.Overexpression of ABT promotes seed germination and seedling greening in the presence of ABA,whereas knockout of ABT has the opposite effect.We found that ABT interacts with the PYR1/PYL/RCAR and PP2C proteins,interferes with the interaction between PYR1/PYL4 and ABI1/ABI2,and hampers the inhibition of ABI1/ABI2 by ABA-bound PYR1/PYL4,thereby terminating ABA signaling.Taken together,our results reveal a core mechanism of ABA signaling termination that is critical for seed germination and seedling establishment in Arabidopsis.
基金We would like to acknowledge support from the National Science Foundation of China,the National Program on Key Basic Research Project,the Key Basic Research Project of Applied Basic Research Program of Hebei Province,the National Transgenic Key Project of MOA,the Ministry of Science and Innovation of Spain,the International Exchange Program of the University of Naples ‘Federico Ⅱ' to G.B.No conflict of interest declared
文摘Soil salinity is a growing problem around the world with special relevance in farmlands. The ability to sense and respond to environmental stimuli is among the most fundamental processes that enable plants to survive. At the cellular level, the Salt Overly Sensitive (SOS) signaling pathway that comprises SOS3, SOS2, and SOS1 has been proposed to mediate cellular signaling under salt stress, to maintain ion homeostasis. Less well known is how cellularly heterog- enous organs couple the salt signals to homeostasis maintenance of different types of cells and to appropriate growth of the entire organ and plant. Recent evidence strongly indicates that different regulatory mechanisms are adopted by roots and shoots in response to salt stress. Several reports have stated that, in roots, the SOS proteins may have novel roles in addition to their functions in sodium homeostasis. SOS3 plays a critical role in plastic development of lateral roots through modulation of auxin gradients and maxima in roots under mild salt conditions. The SOS proteins also play a role in the dynamics of cytoskeleton under stress. These results imply a high complexity of the regulatory networks involved in plant response to salinity. This review focuses on the emerging complexity of the SOS signaling and SOS protein functions, and highlights recent understanding on how the SOS proteins contribute to different responses to salt stress besides ion homeostasis.