Hepatocellular carcinoma(HCC) is considered the fifth most prevalent cancer among all types of cancers and has the third most morbidity value. It has the most frequent duplication time and a high recurrence rate. Rece...Hepatocellular carcinoma(HCC) is considered the fifth most prevalent cancer among all types of cancers and has the third most morbidity value. It has the most frequent duplication time and a high recurrence rate. Recently, the most unique technique used is liquid biopsies, which carry many markers;the most prominent is circulating tumor DNA(ctDNA). Varied methods are used to investigate ctDNA, including various forms of polymerase chain reaction(PCR) [emulsion PCR(ePCR), digital PCR(dPCR), and bead, emulsion, amplification, magnetic(BEAMing) PCR]. Hence ctDNA is being recognized as a potential biomarker that permits early cancer detection,treatment monitoring, and predictive data on tumor burden are subjective to therapy or surgery. Numerous ctDNA biomarkers have been investigated based on their alterations such as 1) single nucleotide variations(either insertion or deletion of a nucleotide) markers including TP53, KRAS, and CCND1;2) copy number variations which include markers such as CDK6, EFGR, MYC and BRAF;3) DNA methylation(RASSF1A, SEPT9, KMT2C and CCNA2);4) homozygous mutation includes ctDNA markers as CDKN2A, AXIN1;and 5) gain or loss of function of the genes, particularly for HCC. Various researchers have conducted many studies and gotten fruitful results.Still, there are some drawbacks to ctDNA namely low quantity, fragment heterogeneity, less stability, limited mutant copies and standards, and differential sensitivity. However, plenty of investigations demonstrate ctDNA's significance as a polyvalent biomarker for cancer and can be viewed as a future diagnostic, prognostic and therapeutic agent. This article overviews many conditions in genetic changes linked to the onset and development of HCC, such as dysregulated signaling pathways, somatic mutations, single-nucleotide polymorphisms, and genomic instability. Additionally, efforts are also made to develop treatments for HCC that are molecularly targeted and to unravel some of the genetic pathways that facilitate its early identification.展开更多
AIM: To evaluate the role of CDX2 homeobox protein as a predictor for cancer progression and prognosis as well as its correlation with MUC2 expression. CDX2 represents a transcription factor for various intestinal gen...AIM: To evaluate the role of CDX2 homeobox protein as a predictor for cancer progression and prognosis as well as its correlation with MUC2 expression. CDX2 represents a transcription factor for various intestinal genes (including MUC2) and thus an important regulator of intestinal differentiation, which could previously be identified in gastric carcinomas and intestinal metaplasia. METHODS: Formalin-fixed and paraffin-embedded tissues from 190 gastric carcinoma patients were stained with monodonal antibodies recognizing CDX2 and MUC2, respectively. Immunoreactivity was evaluated semiquantitatively and statistical analyses including x2 tests, uni- and multi-variate survival analyses were performed. RESULTS: CDX2 was mostly expressed in a nuclear or supranuclear pattern,whereas MUC2 showed an almost exclusive supranuclear reactivity.Both antigens were present in >80% of areas exhibiting intestinal metaplasia. An immunoreactivity in >5% of the tumor area was observed in 57% (CDX2) or in 21% (MUC2) of the carcinomas.The presence of both molecules did not correlate with WHO, Lauren and Goseki classification (with the exception of a significantly stronger MUC2 expression in mucinous tumors). CDX2 correlated with a lower pT and pN stage in the subgroups of intestinal and stage I cancers and was associated with MUC2 positivity.A prognostic impact of CDX2 or MUC2 was not observed. CONCLUSION: CDX2 and MUC2 play an important role in the differentiation of normal, inflamed, and neoplastic gastric tissues. According to our results, loss of CDX2 may represent a marker of tumor progression in early gastric cancer and carcinomas with an intestinal phenotype.展开更多
AIM: To investigate the effect of 5-allyl-7-gen-difluoromethylenechrysin (ADFMChR) on apoptosis of human liver carcinoma HepG2 cell line and the molecular mechanisms involved.METHODS: HepG2 cells and L-02 cells we...AIM: To investigate the effect of 5-allyl-7-gen-difluoromethylenechrysin (ADFMChR) on apoptosis of human liver carcinoma HepG2 cell line and the molecular mechanisms involved.METHODS: HepG2 cells and L-02 cells were cultured in vitro and the inhibitory effect of ADFMChR on their proliferation was measured by MTT assay. The apoptosis of HepG2 cells was determined by flow cytometry (FCM) using propidium iodide (PI) fluorescence staining. DNA ladder bands were observed by DNA agarose gel electrophoresis. The influence of ADFMChR on the proxisome proliferator-activated receptor γ (PPARγ), NF-κB, Bcl-2 and Bax protein expression of HepG2 cells were analyzed by Western blotting.RESULTS: MTT assay showed that ADFMChR significantly inhibited proliferation of HepG2 cells in a dose- dependent manner, with little effect on growth of L-02 cells, and when ICs0 was measured as 8.45 μmol/L and 191.55 μmol/L respectively, the potency of ADFMChR to HepG2 cells, was found to be similar to 5-fluorouracil (5-FU, ICso was 9.27 μmol/L). The selective index of ADFMChR cytotoxicity to HepG2 cells was 22.67 (191.55/8.45), higher than 5-FU (SI was 7.05 (65.37/9.27). FCM with PI staining demonstrated that the apoptosis rates of HepG2 cells treated with 3.0, 10.0 and 30.0 μmol/L ADFMChR for 48 h were 5.79%, 9.29% and 37.8%, respectively, and were significantly higher when treated with 30.0 μmol/L ADFMChR than when treated with 30.0 μmol/L ChR (16.0%) (P 〈 0.05) and were similar to those obtained with 30.0 μmol/L 5-FU(41.0%). DNA agarose gel electrophoresis showed that treatment of HepG2 cells with 10.0 μmol/L ADFMChR for 48 h and 72 h resulted in typical DNA ladders which could be reversed by 10.00 pmol/1 GW9662, a blocker of PPARy. Western blotting analysis revealed that aEer 24 h of treatment with 3.0, 10.0, 30.0 μmol/L ADFMChR, PPARy and Bax protein expression in HepG2 cells increased but Bcl-2 and NF-κB expression decreased; however, pre-incubation with 10.0 μmol/L GW9662 could efficiently antagonize and weaken the regulatory effect of 3.0, 30.0 μmol/L ADFMChR on PPARy and NF-KB protein expression in HepG2 cells.CONCLUSION: ADFMChR induces apoptosis of HepG2 cell lines by activating PPARγ, inhibiting protein expression of Bcl-2 and NF-κB, and increasing Bax expression.展开更多
Objective: Bererine has been used to treat type 2 diabetes mellitus in Chinese traditional medicine because of its hypoglycemic effect. In this report, we compared the intrinsic tyrosine kinase activities of erythroc...Objective: Bererine has been used to treat type 2 diabetes mellitus in Chinese traditional medicine because of its hypoglycemic effect. In this report, we compared the intrinsic tyrosine kinase activities of erythrocyte insulin receptors from type 2 diabetes mellitus with or without stimulation by berberine in vitro. Methods- Preparations containing insulin receptors were obtained from soluble human erythrocytes, and the insulin receptors were partially purified by affinity chromatography. The tyrosine kinase activity was measured by the exogenous substrate phosphorylation. Results: Both the membrane tyrosine kinase activity and the purified receptor tyrosine kinase activity from diabetics decreased significantly compared with those of normal individuals (reduced by 67.4% and 47.2%, respectively). After incubation with berbefine, there is a statistical difference in the activity of membrane tyrosine kinase for diabetic patients ( a 150% increase). Berefine had no effect on the tyrosine kinase activity of purified insulin receptors. Conclusion: We concluded from these results that berbefine was able to improve the insulin sensitivity by increasing the protein tyrosine kinase activity of membrane-bound insulin receptors from type 2 diabetes mellitus.展开更多
基金supported by National Natural Science Foundation of China (No. 31902287)Key R&D and Promotion Projects of Henan Province (No. 242102310467, No. 242102310240 and No. 23210 2310132)Henan Department of Public Health (No. LHGJ20221021)。
文摘Hepatocellular carcinoma(HCC) is considered the fifth most prevalent cancer among all types of cancers and has the third most morbidity value. It has the most frequent duplication time and a high recurrence rate. Recently, the most unique technique used is liquid biopsies, which carry many markers;the most prominent is circulating tumor DNA(ctDNA). Varied methods are used to investigate ctDNA, including various forms of polymerase chain reaction(PCR) [emulsion PCR(ePCR), digital PCR(dPCR), and bead, emulsion, amplification, magnetic(BEAMing) PCR]. Hence ctDNA is being recognized as a potential biomarker that permits early cancer detection,treatment monitoring, and predictive data on tumor burden are subjective to therapy or surgery. Numerous ctDNA biomarkers have been investigated based on their alterations such as 1) single nucleotide variations(either insertion or deletion of a nucleotide) markers including TP53, KRAS, and CCND1;2) copy number variations which include markers such as CDK6, EFGR, MYC and BRAF;3) DNA methylation(RASSF1A, SEPT9, KMT2C and CCNA2);4) homozygous mutation includes ctDNA markers as CDKN2A, AXIN1;and 5) gain or loss of function of the genes, particularly for HCC. Various researchers have conducted many studies and gotten fruitful results.Still, there are some drawbacks to ctDNA namely low quantity, fragment heterogeneity, less stability, limited mutant copies and standards, and differential sensitivity. However, plenty of investigations demonstrate ctDNA's significance as a polyvalent biomarker for cancer and can be viewed as a future diagnostic, prognostic and therapeutic agent. This article overviews many conditions in genetic changes linked to the onset and development of HCC, such as dysregulated signaling pathways, somatic mutations, single-nucleotide polymorphisms, and genomic instability. Additionally, efforts are also made to develop treatments for HCC that are molecularly targeted and to unravel some of the genetic pathways that facilitate its early identification.
文摘AIM: To evaluate the role of CDX2 homeobox protein as a predictor for cancer progression and prognosis as well as its correlation with MUC2 expression. CDX2 represents a transcription factor for various intestinal genes (including MUC2) and thus an important regulator of intestinal differentiation, which could previously be identified in gastric carcinomas and intestinal metaplasia. METHODS: Formalin-fixed and paraffin-embedded tissues from 190 gastric carcinoma patients were stained with monodonal antibodies recognizing CDX2 and MUC2, respectively. Immunoreactivity was evaluated semiquantitatively and statistical analyses including x2 tests, uni- and multi-variate survival analyses were performed. RESULTS: CDX2 was mostly expressed in a nuclear or supranuclear pattern,whereas MUC2 showed an almost exclusive supranuclear reactivity.Both antigens were present in >80% of areas exhibiting intestinal metaplasia. An immunoreactivity in >5% of the tumor area was observed in 57% (CDX2) or in 21% (MUC2) of the carcinomas.The presence of both molecules did not correlate with WHO, Lauren and Goseki classification (with the exception of a significantly stronger MUC2 expression in mucinous tumors). CDX2 correlated with a lower pT and pN stage in the subgroups of intestinal and stage I cancers and was associated with MUC2 positivity.A prognostic impact of CDX2 or MUC2 was not observed. CONCLUSION: CDX2 and MUC2 play an important role in the differentiation of normal, inflamed, and neoplastic gastric tissues. According to our results, loss of CDX2 may represent a marker of tumor progression in early gastric cancer and carcinomas with an intestinal phenotype.
基金Supported by Research Grant of Department of Science and Technology of Hunan Province,2007TP4017
文摘AIM: To investigate the effect of 5-allyl-7-gen-difluoromethylenechrysin (ADFMChR) on apoptosis of human liver carcinoma HepG2 cell line and the molecular mechanisms involved.METHODS: HepG2 cells and L-02 cells were cultured in vitro and the inhibitory effect of ADFMChR on their proliferation was measured by MTT assay. The apoptosis of HepG2 cells was determined by flow cytometry (FCM) using propidium iodide (PI) fluorescence staining. DNA ladder bands were observed by DNA agarose gel electrophoresis. The influence of ADFMChR on the proxisome proliferator-activated receptor γ (PPARγ), NF-κB, Bcl-2 and Bax protein expression of HepG2 cells were analyzed by Western blotting.RESULTS: MTT assay showed that ADFMChR significantly inhibited proliferation of HepG2 cells in a dose- dependent manner, with little effect on growth of L-02 cells, and when ICs0 was measured as 8.45 μmol/L and 191.55 μmol/L respectively, the potency of ADFMChR to HepG2 cells, was found to be similar to 5-fluorouracil (5-FU, ICso was 9.27 μmol/L). The selective index of ADFMChR cytotoxicity to HepG2 cells was 22.67 (191.55/8.45), higher than 5-FU (SI was 7.05 (65.37/9.27). FCM with PI staining demonstrated that the apoptosis rates of HepG2 cells treated with 3.0, 10.0 and 30.0 μmol/L ADFMChR for 48 h were 5.79%, 9.29% and 37.8%, respectively, and were significantly higher when treated with 30.0 μmol/L ADFMChR than when treated with 30.0 μmol/L ChR (16.0%) (P 〈 0.05) and were similar to those obtained with 30.0 μmol/L 5-FU(41.0%). DNA agarose gel electrophoresis showed that treatment of HepG2 cells with 10.0 μmol/L ADFMChR for 48 h and 72 h resulted in typical DNA ladders which could be reversed by 10.00 pmol/1 GW9662, a blocker of PPARy. Western blotting analysis revealed that aEer 24 h of treatment with 3.0, 10.0, 30.0 μmol/L ADFMChR, PPARy and Bax protein expression in HepG2 cells increased but Bcl-2 and NF-κB expression decreased; however, pre-incubation with 10.0 μmol/L GW9662 could efficiently antagonize and weaken the regulatory effect of 3.0, 30.0 μmol/L ADFMChR on PPARy and NF-KB protein expression in HepG2 cells.CONCLUSION: ADFMChR induces apoptosis of HepG2 cell lines by activating PPARγ, inhibiting protein expression of Bcl-2 and NF-κB, and increasing Bax expression.
文摘Objective: Bererine has been used to treat type 2 diabetes mellitus in Chinese traditional medicine because of its hypoglycemic effect. In this report, we compared the intrinsic tyrosine kinase activities of erythrocyte insulin receptors from type 2 diabetes mellitus with or without stimulation by berberine in vitro. Methods- Preparations containing insulin receptors were obtained from soluble human erythrocytes, and the insulin receptors were partially purified by affinity chromatography. The tyrosine kinase activity was measured by the exogenous substrate phosphorylation. Results: Both the membrane tyrosine kinase activity and the purified receptor tyrosine kinase activity from diabetics decreased significantly compared with those of normal individuals (reduced by 67.4% and 47.2%, respectively). After incubation with berbefine, there is a statistical difference in the activity of membrane tyrosine kinase for diabetic patients ( a 150% increase). Berefine had no effect on the tyrosine kinase activity of purified insulin receptors. Conclusion: We concluded from these results that berbefine was able to improve the insulin sensitivity by increasing the protein tyrosine kinase activity of membrane-bound insulin receptors from type 2 diabetes mellitus.