期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Temporal Dynamics and Performance Association of the Tetrasphaera-Enriched Microbiome for Enhanced Biological Phosphorus Removal 被引量:1
1
作者 Hui Wang Yubo Wang +2 位作者 Guoqing Zhang Ze Zhao Feng Ju 《Engineering》 SCIE EI CAS CSCD 2023年第10期168-178,共11页
Tetrasphaera have been recently identified based on the 16S ribosomal RNA(rRNA)gene as among the most abundant polyphosphate-accumulating organisms(PAOs)in global full-scale wastewater treatment plants(WWTPs)with enha... Tetrasphaera have been recently identified based on the 16S ribosomal RNA(rRNA)gene as among the most abundant polyphosphate-accumulating organisms(PAOs)in global full-scale wastewater treatment plants(WWTPs)with enhanced biological phosphorus removal(EBPR).However,it is unclear how Tetrasphaera PAOs are selectively enriched in the context of the EBPR microbiome.In this study,an EBPR microbiome enriched with Tetrasphaera(accounting for 40%of 16S sequences on day 113)was built using a top-down design approach featuring multicarbon sources and a low dosage of allylthiourea.The microbiome showed enhanced nutrient removal(phosphorus removal~85%and nitrogen removal~80%)and increased phosphorus recovery(up to 23.2 times)compared with the seeding activated sludge from a local full-scale WWTP.The supply of 1 mg·L^(-1)allylthiourea promoted the coselection of Tetrasphaera PAOs and Microlunatus PAOs and sharply reduced the relative abundance of both ammonia oxidizer Nitrosomonas and putative competitors Brevundimonas and Paracoccus,facilitating the establishment of the EBPR microbiome.Based on 16S rRNA gene analysis,a putative novel PAO species,EBPR-ASV0001,was identified with Tetrasphaera japonica as its closest relative.This study provides new knowledge on the establishment of a Tetrasphaera-enriched microbiome facilitated by allylthiourea,which can be further exploited to guide future process upgrading and optimization to achieve and/or enhance simultaneous biological phosphorus and nitrogen removal from high-strength wastewater. 展开更多
关键词 Enhanced biological phosphorus removal(EBPR) Polyphosphate-accumulating organisms(PAOs) Tetrasphaera MICROBIOME Phosphorus recovery
下载PDF
Synthetic biology of plant natural products: From pathway elucidation to engineered biosynthesis in plant cells 被引量:9
2
作者 Xiaoxi Zhu Xiaonan Liu +4 位作者 Tian Liu Yina Wang Nida Ahmed Zhichao Li Huifeng Jiang 《Plant Communications》 2021年第5期62-77,共16页
Plant natural products(PNPs)are the main sources of drugs,food additives,and new biofuels and have become a hotspot in synthetic biology.In the past two decades,the engineered biosynthesis of many PNPs has been achiev... Plant natural products(PNPs)are the main sources of drugs,food additives,and new biofuels and have become a hotspot in synthetic biology.In the past two decades,the engineered biosynthesis of many PNPs has been achieved through the construction of microbial cell factories.Alongside the rapid development of plant physiology,genetics,and plant genetic modification techniques,hosts have now expanded from single-celled microbes to complex plant systems.Plant synthetic biology is an emerging field that combines engineering principles with plant biology.In this review,we introduce recent advances in the biosynthetic pathway elucidation of PNPs and summarize the progress of engineered PNP biosynthesis in plant cells.Furthermore,a future vision of plant synthetic biology is proposed.Although we are still a long way from overcoming all the bottlenecks in plant synthetic biology,the ascent of this field is expected to provide a huge opportunity for future agriculture and industry. 展开更多
关键词 plant natural products plant synthetic biology plant transgenic technology
原文传递
Engineering of cofactor preference and catalytic activity of methanol dehydrogenase by growth-coupled directed evolution
3
作者 Jinxing Yang Liwen Fan +5 位作者 Guimin Cheng Tao Cai Jibin Sun Ping Zheng Shuang Li Yu Wang 《Green Carbon》 2024年第2期242-251,共10页
Methanol,produced from carbon dioxide,natural gas,and biomass,has drawn increasing attention as a promising green carbon feedstock for biomanufacturing due to its sustainable and energy-rich properties.Nicotinamide ad... Methanol,produced from carbon dioxide,natural gas,and biomass,has drawn increasing attention as a promising green carbon feedstock for biomanufacturing due to its sustainable and energy-rich properties.Nicotinamide adenine dinucleotide(NAD^(+))-dependent methanol dehydrogenase(MDH)catalyzes the oxidation of methanol to formaldehyde via NADH generation,providing a highly active C1 intermediate and reducing power for subsequent biosynthesis.However,the unsatisfactory catalytic efficiency and cofactor bias of MDH significantly impede methanol valorization,especially in nicotinamide adenine dinucleotide phosphate(NADP^(+))-dependent biosynthesis.Herein,we employed synthetic NADH and NADPH auxotrophic Escherichia coli strains as growth-coupled selection platforms for the directed evolution of MDH from Bacillus stearothermophilus DSM 2334.NADH or NADPH generated by MDH-catalyzed methanol oxidation enabled the growth of synthetic cofactor auxotrophs,establishing a positive correlation between the cell growth rate and MDH activity.Using this principle,MDH mutants exhibiting a 20-fold improvement in catalytic efficiency(k_(cat)/K_(m))and a 90-fold cofactor specificity switch from NAD^(+)to NADP+without a decrease in specific enzyme activity,were efficiently screened from random and semi-rationally designed libraries.We envision that these mutants will advance methanol valorization and that the synthetic cofactor auxotrophs will serve as versatile selection platforms for the evolution of NAD(P)^(+)-dependent enzymes. 展开更多
关键词 Growth-coupled screening Methanol dehydrogenase Cofactor engineering Directed evolution C1 bioconversion
原文传递
Medium Optimization for Antifungal Active Substance Production from Streptomyces Lydicus Using Response Surface Methodology 被引量:5
4
作者 Yan Zhao Yingquan Liang +2 位作者 Lei Liu Jingsheng Cheng Yingjin Yuan 《Transactions of Tianjin University》 EI CAS 2017年第1期78-86,共9页
Response surface methodology was used to optimize the medium for antifungal active substance production from Streptomyces lydicus E12 in flask cultivation. Initially, the component factors, which influence antifungal ... Response surface methodology was used to optimize the medium for antifungal active substance production from Streptomyces lydicus E12 in flask cultivation. Initially, the component factors, which influence antifungal substance production, were studied by varying one factor at a time. Starch, soybean cake powder, K2HPO4·3H2O and MgSO4·7H2O were found to have a significant effect on the production of antifungal substances by the traditional design. Then, a Box–Behnken design was applied for further optimization. A quadratic model was found to fit antifungal active substance production. The analysis revealed that the optimum values of the tested variable were starch 84.96 g/L, soybean cake powder 4.13 g/L, glucose 5 g/L, MgSO4·7H2O 1.23 g/L, K2HPO4·3H2O 2.14 g/L and NaCl 0.5 g/L. The test result of 67.44% antifungal inhibition agreed with the prediction and increased by 14.28% in comparison with the basal medium. © 2016, Tianjin University and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 BACTERIA Enzyme inhibition STARCH Surface properties
下载PDF
Stoichiometric Conversion of Maltose for Biomanufacturing by In Vitro Synthetic Enzymatic Biosystems 被引量:2
5
作者 Guowei Li Xinlei Wei +4 位作者 Ranran Wu Wei Zhou Yunjie Li Zhiguang Zhu Chun You 《BioDesign Research》 2022年第1期217-227,共11页
Maltose is a natural α-(1,4)-linked disaccharide with wide applications in food industries and microbial fermentation. However,maltose has scarcely been used for in vitro biosynthesis, possibly because its phosphoryl... Maltose is a natural α-(1,4)-linked disaccharide with wide applications in food industries and microbial fermentation. However,maltose has scarcely been used for in vitro biosynthesis, possibly because its phosphorylation by maltose phosphorylase (MP)yields β-glucose 1-phosphate (β-G1P) that cannot be utilized by α-phosphoglucomutase (α-PGM) commonly found in in vitrosynthetic enzymatic biosystems previously constructed by our group. Herein, we designed an in vitro synthetic enzymaticreaction module comprised of MP, β-phosphoglucomutase (β-PGM), and polyphosphate glucokinase (PPGK) for thestoichiometric conversion of each maltose molecule to two glucose 6-phosphate (G6P) molecules. Based on this syntheticmodule, we further constructed two in vitro synthetic biosystems to produce bioelectricity and fructose 1,6-diphosphate (FDP),respectively. The 14-enzyme biobattery achieved a Faraday efficiency of 96.4% and a maximal power density of 0.6mW/cm^(2),whereas the 5-enzyme in vitro FDP-producing biosystem yielded 187.0mM FDP from 50 g/L (139mM) maltose by adopting afed-batch substrate feeding strategy. Our study not only suggests new application scenarios for maltose but also provides novelstrategies for the high-efficient production of bioelectricity and value-added biochemicals. 展开更多
关键词 ENZYMATIC utilized MAXIMAL
原文传递
Genome-scale CRISPRi screening:A powerful tool in engineering microbiology 被引量:2
6
作者 Letian Sun Ping Zheng +2 位作者 Jibin Sun Volker F.Wendisch Yu Wang 《Engineering Microbiology》 2023年第3期65-74,共10页
Deciphering gene function is fundamental to engineering of microbiology.The clustered regularly interspaced short palindromic repeats(CRISPR)system has been adapted for gene repression across a range of hosts,creating... Deciphering gene function is fundamental to engineering of microbiology.The clustered regularly interspaced short palindromic repeats(CRISPR)system has been adapted for gene repression across a range of hosts,creating a versatile tool called CRISPR interference(CRISPRi)that enables genome-scale analysis of gene function.This approach has yielded significant advances in the design of genome-scale CRISPRi libraries,as well as in applica-tions of CRISPRi screening in medical and industrial microbiology.This review provides an overview of the recent progress made in pooled and arrayed CRISPRi screening in microorganisms and highlights representative studies that have employed this method.Additionally,the challenges associated with CRISPRi screening are discussed,and potential solutions for optimizing this strategy are proposed. 展开更多
关键词 CRISPR interference Genome-scale library Pooled screening Arrayed screening Genotype-phenotype mapping Functional genomics
原文传递
Directed evolution of a neutrophilic and mesophilic methanol dehydrogenase based on high-throughput and accurate measurement of formaldehyde 被引量:1
7
作者 Jin Qian Liwen Fan +11 位作者 Jinxing Yang Jinhui Feng Ning Gao Guimin Cheng Wei Pu Wenjuan Zhou Tao Cai Shuang Li Ping Zheng Jibin Sun Depei Wang Yu Wang 《Synthetic and Systems Biotechnology》 SCIE CSCD 2023年第3期386-395,共10页
Methanol is a promising one-carbon feedstock for biomanufacturing,which can be sustainably produced from carbon dioxide and natural gas.However,the efficiency of methanol bioconversion is limited by the poor catalytic... Methanol is a promising one-carbon feedstock for biomanufacturing,which can be sustainably produced from carbon dioxide and natural gas.However,the efficiency of methanol bioconversion is limited by the poor catalytic properties of nicotinamide adenine dinucleotide(NAD^(+))-dependent methanol dehydrogenase(Mdh)that oxidizes methanol to formaldehyde.Herein,the neutrophilic and mesophilic NAD^(+)-dependent Mdh from Bacillus stearothermophilus DSM 2334(Mdh_(Bs))was subjected to directed evolution for enhancing the catalytic activity.The combination of formaldehyde biosensor and Nash assay allowed high-throughput and accurate measurement of formaldehyde and facilitated efficient selection of desired variants.Mdh_(Bs)variants with up to 6.5-fold higher K_(cat)/K_(M)value for methanol were screened from random mutation libraries.The T153 residue that is spatially proximal to the substrate binding pocket has significant influence on enzyme activity.The beneficial T153P mutation changes the interaction network of this residue and breaks theα-helix important for substrate binding into two shortα-helices.Reconstructing the interaction network of T153 with surrounding residues may represent a promising strategy to further improve Mdh_(Bs),and this study provides an efficient strategy for directed evolution of Mdh. 展开更多
关键词 Methanol dehydrogenase Formaldehyde biosensor Directed evolution C1 bioconversion Methanol oxidation Methylotrophy
原文传递
Design and Construction of Artificial Biological Systems for One-Carbon Utilization 被引量:1
8
作者 Wei Zhong Hailong Li Yajie Wang 《BioDesign Research》 CAS 2023年第1期137-154,共18页
The third-generation(3G)biorefinery aims to use microbial cell factories or enzymatic systems to synthesize value-added chemicals from one-carbon(C1)sources,such as CO_(2),formate,and methanol,fueled by renewable ener... The third-generation(3G)biorefinery aims to use microbial cell factories or enzymatic systems to synthesize value-added chemicals from one-carbon(C1)sources,such as CO_(2),formate,and methanol,fueled by renewable energies like light and electricity.This promising technology represents an important step toward sustainable development,which can help address some of the most pressing environmental challenges faced by modern society.However,to establish processes competitive with the petroleum industry,it is crucial to determine the most viable pathways for C1 utilization and productivity and yield of the target products.In this review,we discuss the progresses that have been made in constructing artificial biological systems for 3G biorefineries in the last 10 years.Specifically,we highlight the representative works on the engineering of artificial autotrophic microorganisms,tandem enzymatic systems,and chemobio hybrid systems for C1 utilization.We also prospect the revolutionary impact of these developments on biotechnology.By harnessing the power of 3G biorefinery,scientists are establishing a new frontier that could potentially revolutionize our approach to industrial production and pave the way for a more sustainable future. 展开更多
关键词 FRONTIER establishing COMPETITIVE
原文传递
Improving pathway prediction accuracy of constraints-based metabolic network models by treating enzymes as microcompartments
9
作者 Xue Yang Zhitao Mao +4 位作者 Jianfeng Huang Ruoyu Wang Huaming Dong Yanfei Zhang Hongwu Ma 《Synthetic and Systems Biotechnology》 SCIE CSCD 2023年第4期597-605,共9页
Metabolic network models have become increasingly precise and accurate as the most widespread and practical digital representations of living cells.The prediction functions were significantly expanded by integrating c... Metabolic network models have become increasingly precise and accurate as the most widespread and practical digital representations of living cells.The prediction functions were significantly expanded by integrating cellular resources and abiotic constraints in recent years.However,if unreasonable modeling methods were adopted due to a lack of consideration of biological knowledge,the conflicts between stoichiometric and other constraints,such as thermodynamic feasibility and enzyme resource availability,would lead to distorted predictions.In this work,we investigated a prediction anomaly of EcoETM,a constraints-based metabolic network model,and introduced the idea of enzyme compartmentalization into the analysis process.Through rational combination of reactions,we avoid the false prediction of pathway feasibility caused by the unrealistic assumption of free intermediate metabolites.This allowed us to correct the pathway structures of L-serine and L-tryptophan.A specific analysis explains the application method of the EcoETM-like model and demonstrates its potential and value in correcting the prediction results in pathway structure by resolving the conflict between different constraints and incorporating the evolved roles of enzymes as reaction compartments.Notably,this work also reveals the trade-off between product yield and thermodynamic feasibility.Our work is of great value for the structural improvement of constraints-based models. 展开更多
关键词 Genome-scale metabolic network models (GEMs) Enzymatic and thermodynamic constraints Thermodynamic driving force(MDF) COMPARTMENTALIZATION Multifunctional enzymes Enzyme complexes
原文传递
High-throughput base editing KO screening of cellular factors for enhanced GBE
10
作者 Jie Yang Dongdong Zhao +5 位作者 Xiagu Zhu Yuanzhao Yang Bo Li Siwei Li Chang-Hao Bi Xue-Li Zhang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2023年第8期611-614,共4页
Base editor techniques have been developed as a means of precisely converting bases without the need for double-stranded DNA breaks(DSBs)or editing templates.Currently,these techniques can be used for cytosine(C)to th... Base editor techniques have been developed as a means of precisely converting bases without the need for double-stranded DNA breaks(DSBs)or editing templates.Currently,these techniques can be used for cytosine(C)to thymine(T)conversions(cytosine base editors,CBEs)(Komor et al.,2016;Nishida et al.,2016),adenine(A)to guanine(G)conversions(adenine base editors,ABEs)(Gaudelli et al.,2017),and cytosine(C)to guanine(G)conversions(glycosylase base editors,GBEs)(Zhao et al.,2021)in mammalian cells.GBE,in particular,is a promising base editing technique capable of correcting up to 11%of the 32,044 pathogenic single nucleotide polymorphisms(SNPs)known to date(Gaudelli et al.,2017).Despite its potential,the performance of GBE is still not optimal,and its editing outcomes exhibit a wider variation range than those of CBEs due to the dependence on cellular DNA repair systems(Jiang et al.,2021),which implies that efficient GBE performance remains a challenge. 展开更多
关键词 GBE BASE CBE
原文传递
Reconstruction and metabolic profiling of the genome-scale metabolic network model of Pseudomonas stutzeri A1501
11
作者 Qianqian Yuan Fan Wei +5 位作者 Xiaogui Deng Aonan Li Zhenkun Shi Zhitao Mao Feiran Li Hongwu Ma 《Synthetic and Systems Biotechnology》 SCIE CSCD 2023年第4期688-696,共9页
Pseudomonas stutzeri A1501 is a non-fluorescent denitrifying bacteria that belongs to the gram-negative bacterial group.As a prominent strain in the fields of agriculture and bioengineering,there is still a lack of co... Pseudomonas stutzeri A1501 is a non-fluorescent denitrifying bacteria that belongs to the gram-negative bacterial group.As a prominent strain in the fields of agriculture and bioengineering,there is still a lack of comprehensive understanding regarding its metabolic capabilities,specifically in terms of central metabolism and substrate utilization.Therefore,further exploration and extensive studies are required to gain a detailed insight into these aspects.This study reconstructed a genome-scale metabolic network model for P.stutzeri A1501 and conducted extensive curations,including correcting energy generation cycles,respiratory chains,and biomass composition.The final model,iQY1018,was successfully developed,covering more genes and reactions and having higher prediction accuracy compared with the previously published model iPB890.The substrate utilization ability of 71 carbon sources was investigated by BIOLOG experiment and was utilized to validate the model quality.The model prediction accuracy of substrate utilization for P.stutzeri A1501 reached 90%.The model analysis revealed its new ability in central metabolism and predicted that the strain is a suitable chassis for the production of Acetyl CoA-derived products.This work provides an updated,high-quality model of P.stutzeri A1501for further research and will further enhance our understanding of the metabolic capabilities. 展开更多
关键词 NETWORK PREDICTION METABOLISM
原文传递
Biomanufacturing boosts the high-level development of economy and society
12
作者 Chun Li An-Ping Zeng Ying-Jin Yuan 《Green Chemical Engineering》 EI CSCD 2023年第2期135-136,共2页
Global society requires new technologies for manufacturing essential chemicals for modern life that are decoupled from fossil fuels.Therefore,Green Chemical Engineering focuses on the areas of green and sustain-able d... Global society requires new technologies for manufacturing essential chemicals for modern life that are decoupled from fossil fuels.Therefore,Green Chemical Engineering focuses on the areas of green and sustain-able development of chemistry and chemical engineering,among which biomanufacturing is an attractive topic. 展开更多
关键词 BOOST ATTRACTIVE CHEMICALS
原文传递
Efficient enzymatic synthesis of(S)-1-(30-bromo-20-methoxyphenyl)ethanol,the key building block of lusutrombopag
13
作者 Yunfeng Cui Yangyang Ji +6 位作者 Xi Chen Jianjiong Li Jinhui Feng Qing Zhao Peiyuan Yao Qiaqing Wu Dunming Zhu 《Green Synthesis and Catalysis》 2023年第3期268-271,共4页
(S)-1-(30-Bromo-20-methoxyphenyl)ethanol((S)-1b)is the key precursor for the synthesis of Lusutrombopag.The bioreduction of 1-(30-bromo-20-methoxyphenyl)ethanone(1a)offers an attractive method to access this important... (S)-1-(30-Bromo-20-methoxyphenyl)ethanol((S)-1b)is the key precursor for the synthesis of Lusutrombopag.The bioreduction of 1-(30-bromo-20-methoxyphenyl)ethanone(1a)offers an attractive method to access this important compound.Through screening the available carbonyl reductases,we obtained a carbonyl reductase from Novosphingobium aromaticivorans(CBR),which could completely convert 100 g/L of 1a to(S)-1b.Furthermore,a carbonyl reductase from Novosphingobium sp.Leaf2(NoCR)was identified to completely convert 200 g/L of 1a to(S)-1b with excellent enantioselectivity(>99%ee)and 77%isolated yield using FDH/formate system for NADH regeneration.The K_(m) and k_(cat) of recombinant NoCR towards 1a were 0.66 mmol/L and 7.5 s-1,and the catalytic efficiency k_(cat)/K_(m) was 11.3 mmol/s.L.Meanwhile,NoCR showed high catalytic activity and stereoselectivity towards acetophenone derivatives with halogen or methoxy substitution on the benzene ring,indicating that NoCR is a valuable biocatalyst with potential practical applications. 展开更多
关键词 BIOCATALYSIS Carbonyl reductase Asymmetric reduction Chiral aryl alcohols Lusutrombopag
原文传递
Engineering CrtW and CrtZ for improving biosynthesis of astaxanthin in Escherichia coli 被引量:4
14
作者 LI Di LI Yang +7 位作者 XU Jiao-Yang LI Qing-Yan TANG Jin-Lei JIA Shi-Ru BI Chang-Hao DAI Zhu-Bo ZHU Xin-Na ZHANG Xue-Li 《Chinese Journal of Natural Medicines》 SCIE CAS CSCD 2020年第9期666-676,共11页
This study engineered β-carotene ketolase CrtW and β-carotene hydroxylase CrtZ to improve biosynthesis of astaxanthin in Escherichia coli. Firstly, crtW was randomly mutated to increase CrtW activities on conversion... This study engineered β-carotene ketolase CrtW and β-carotene hydroxylase CrtZ to improve biosynthesis of astaxanthin in Escherichia coli. Firstly, crtW was randomly mutated to increase CrtW activities on conversion from β-carotene to astaxanthin. A crtW* mutant with A6 T, T105 A and L239 M mutations has improved 5.35-fold astaxanthin production compared with the wild-type control. Secondly, the expression levels of crtW* and crtZ on chromosomal were balanced by simultaneous modulation RBS regions of their genes using RBS library. The strain RBS54 selected from RBS library, directed the pathway exclusively towards the desired product astaxanthin as predominant carotenoid(99%). Lastly, the number of chromosomal copies of the balanced crtW*-crtZ cassette from RBS54 was increased using a Cre-loxP based technique, and a strain with 30 copies of the crtW*-crtZ cassette was selected. This final strain DL-A008 had a 9.8-fold increase of astaxanthin production compared with the wild-type control. Fed-batch fermentation showed that DL-A008 produced astaxanthin as predominant carotenoid(99%) with a specific titer of 0.88 g·L^(-1) without addition of inducer. In conclusion, through constructing crtW mutation, balancing the expression levels between crtW* and crtZ, and increasing the copy number of the balanced crtW*-crtZ cassette, the activities of β-carotene ketolase and β-carotene hydroxylase were improved for conversion of β-carotene to astaxanthin with higher efficiency. The series of conventional and novel metabolic engineering strategies were designed and applied to construct the astaxanthin hetero-producer strain of E. coli, possibly offering a general approach for the construction of stable hetero-producer strains for other natural products. 展开更多
关键词 ASTAXANTHIN RBS library Metabolic engineering β-Carotene ketolase CRE-LOXP Escherichia coli
原文传递
Effective electrocatalytic hydrodechlorination of 2,4,6-trichlorophenol by a novel Pd/MnO_(2)/Ni foam cathode 被引量:3
15
作者 Zi-Meng Zhang Rui Cheng +8 位作者 Jun Nan Xue-Qi Chen Cong Huang Di Cao Cai-Hua Bai Jing-Long Han Bin Liang Zhi-Ling Li Ai-Jie Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第8期3823-3828,共6页
Pd modified electrodes possess problems such as easy agglomeration and low electrolytic ability,and the use of manganese dioxide(MnO_(2)) to facilitate Pd reduction of organic pollutants is just started.However,there ... Pd modified electrodes possess problems such as easy agglomeration and low electrolytic ability,and the use of manganese dioxide(MnO_(2)) to facilitate Pd reduction of organic pollutants is just started.However,there is still a limited understanding of how to match the Pd load and MnO_(2) to realize optimal dechlorination efficiency at minimum cost.Here,a Pd/MnO_(2)/Ni foam cathode was successfully fabricated and applied for the efficient electrochemical dechlorination of 2,4,6-trichlorophenol(2,4,6-TCP).The optimal electrocatalytic hydrodechlorination(ECH)performance with 2,4,6-TCP dechlorination efficiency(92.58%in 180 min)was obtained when the concentration of PdCl_(2) precipitation was 1 mmol/L,the deposition time of MnO_(2) was 300 s and cathode potential was-0.8 V.Performance influenced by the exogenous factors(e.g.,initial pH and coexisted ions)were further investigated.It was found that the neutral pH was the most favorable for ECH and a reduction in dechlorination efficiency(6%~47.6%)was observed in presence of 5 mmol/L of NO_(2)^(-),NO_(3)^(-),S^(2-)or SO_(3)^(2-).Cyclic voltammetry(CV)and quenching experiments verified the existence of three hydrogen species on Pd surface,including adsorbed atomic hydrogen(H^(*)_(ads)),absorbed atomic hydrogen(H^(*)_(abs)),and molecular hydrogen(H_(2)).And the introduction of MnO_(2)promoted the generation of atomic H^(*).Only adsorbed atomic hydrogen(H^(*)_(ads)) was confirmed that it truly facilitated the ECH process.Besides H^(*)_(ads) induced reduction,the direct reduction by cathode electrons also participated in the 2,4,6-TCP dechlorination process.Pd/MnO_(2)/Ni foam cathode shows excellent dechlorination performance,fine stability and recyclable potential,which provides strategies for the effective degradation of persistent halogenated organic pollutants in groundwater. 展开更多
关键词 Pd/MnO_(2)/Ni foam cathode 2 4 6-Trichlorophenol Electrocatalytic hydrodechlorination Dechlorination pathway Atomic H^(*)generation and utilization
原文传递
Ordered mesoporous carbon as an efficient heterogeneous catalyst to activate peroxydisulfate for degradation of sulfadiazine 被引量:1
16
作者 Zhi-Ling Li Di Cao +6 位作者 Hao Cheng Fan Chen Jun Nan Bin Liang Kai Sun Cong Huang Ai-Jie Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第5期2747-2752,共6页
Catalytic potential of carbon nanomaterials in peroxydisulfate(PDS)advanced oxidation systems for degradation of antibiotics remains poorly understood.This study revealed ordered mesoporous carbon(type CMK)acted as a ... Catalytic potential of carbon nanomaterials in peroxydisulfate(PDS)advanced oxidation systems for degradation of antibiotics remains poorly understood.This study revealed ordered mesoporous carbon(type CMK)acted as a superior catalyst for heterogeneous degradation of sulfadiazine(SDZ)in PDS sys-tem,with a first-order reaction kinetic constant(k)and total organic carbon(TOC)mineralization efficiency of 0.06 min^(–1) and 59.67%±3.4%within 60min,respectively.CMK catalyzed PDS system exhibited high degradation efficiencies of five other sulfonamides and three other types of antibiotics,verifying the broad-degradation capacity of antibiotics.Under neutral pH conditions,the optimal catalytic parameters were an initial SDZ concentration of 44.0mg/L,CMK dosage of 0.07g/L,and PDS dosage of 5.44mmol/L,respectively.X-ray photoelectron spectroscopy and Raman spectrum analysis confirmed that the defect structure at edge of CMK and oxygen-containing functional groups on surface of CMK were major active sites,contributing to the high catalytic activity.Free radical quenching analysis revealed that both SO_(4)•−and•OH were generated and participated in catalytic reaction.In addition,direct electron transfer by CMK to activate PDS also occurred,further promoting catalytic performance.Configuration of SDZ molecule was optimized using density functional theory,and the possible reaction sites in SDZ molecule were calculated using Fukui function.Combining ultra-high-performance liquid chromatography(UPLC)–mass spectrometry(MS)/MS analysis,three potential degradation pathways were proposed,including the direct removal of SO_(2)molecules,the 14S-17N fracture,and the 19C-20N and 19C-27N cleavage of the SDZ molecule.The study demonstrated that ordered mesoporous carbon could work as a feasible catalytic material for PDS advanced oxidation during removal of antibiotics from wastewater. 展开更多
关键词 Ordered mesoporous carbon CMK SULFADIAZINE PEROXYDISULFATE Degradation pathway Density functional theory Physicochemical properties
原文传递
Perturbation of clopyralid on bio-denitrification and nitrite accumulation:Long-term performance and biological mechanism 被引量:1
17
作者 Suyun Sun Ya-Nan Hou +8 位作者 Wei Wei Hafiz Muhammad Adeel Sharif Cong Huang Bing-Jie Ni Haibo Li Yuanyuan Song Caicai Lu Yi Han Jianbo Guo 《Environmental Science and Ecotechnology》 SCIE 2022年第1期27-39,共13页
The contaminant of herbicide clopyralid(3,6-dichloro-2-pyridine-carboxylic acid,CLP)poses a potential threat to the ecological system.However,there is a general lack of research devoted to the perturbation of CLP to t... The contaminant of herbicide clopyralid(3,6-dichloro-2-pyridine-carboxylic acid,CLP)poses a potential threat to the ecological system.However,there is a general lack of research devoted to the perturbation of CLP to the bio-denitrification process,and its biological response mechanism remains unclear.Herein,long-term exposure to CLP was systematically investigated to explore its influences on denitrification performance and dynamic microbial responses.Results showed that low-concentration of CLP(<15 mg/L)caused severe nitrite accumulation initially,while higher concentrations(35e60 mg/L)of CLP had no further effect after long-term acclimation.The mechanistic study demonstrated that CLP reduced nitrite reductase(NIR)activity and inhibited metabolic activity(carbon metabolism and nitrogen metabolism)by causing oxidative stress and membrane damage,resulting in nitrite accumulation.However,after more than 80 days of acclimation,almost no nitrite accumulation was found at 60 mg/L CLP.It was proposed that the secretion of extracellular polymeric substances(EPS)increased from 75.03 mg/g VSS at 15 mg/L CLP to 109.97 mg/g VSS at 60 mg/L CLP,which strengthened the protection of microbial cells and improved NIR activity and metabolic activities.Additionally,the biodiversity and richness of the microbial community experienced a U-shaped process.The relative abundance of denitrification-and carbon metabolism-associated microorganisms decreased initially and then recovered with the enrichment of microorganisms related to the secretion of EPS and N-acyl-homoserine lactones(AHLs).These microorganisms protected microbe from toxic substances and regulated their interactions among interand intra-species.This study revealed the biological response mechanism of denitrification after successive exposure to CLP and provided proper guidance for analyzing and treating herbicide-containing wastewater. 展开更多
关键词 DENITRIFICATION Nitrite accumulation CLOPYRALID Membrane damage Metabolism activity Microbial community
原文传递
Sequence motifs and prediction model of GBE editing outcomes based on target library analysis and machine learning
18
作者 Bo Li Ya-Qiu Li +4 位作者 Dongdong Zhao Jie Yang Yan-He Ma Chang-Hao Bi Xue-Li Zhang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2022年第3期254-257,共4页
Base editor techniques were developed for precise base conversion without requiring double-stranded DNA breaks(DSBs) or an editing template(Komor et al., 2016;Nishida et al., 2016).
关键词 PREDICTION EDITOR
原文传递
A combined strategy for the overproduction of complex ergot alkaloid agroclavine
19
作者 Zhi-Pu Yu Chunyan An +5 位作者 Yongpeng Yao Chang-Yun Wang Zhoutong Sun Chengsen Cui Ling Liu Shu-Shan Gao 《Synthetic and Systems Biotechnology》 SCIE 2022年第4期1126-1132,共7页
Microbial cell factories(MCFs)and cell-free systems(CFSs)are generally considered as two unrelated approaches for the biosynthesis of biomolecules.In the current study,two systems were combined together for the overpr... Microbial cell factories(MCFs)and cell-free systems(CFSs)are generally considered as two unrelated approaches for the biosynthesis of biomolecules.In the current study,two systems were combined together for the overproduction of agroclavine(AC),a structurally complex ergot alkaloid.The whole biosynthetic pathway for AC was split into the early pathway and the late pathway at the point of the FAD-linked oxidoreductase EasE,which was reconstituted in an MCF(Aspergillus nidulans)and a four-enzyme CFS,respectively.The final titer of AC of this combined system is 1209 mg/L,which is the highest one that has been reported so far,to the best of our knowledge.The development of such a combined route could potentially avoid the limitations of both MCF and CFS systems,and boost the production of complex ergot alkaloids with polycyclic ring systems. 展开更多
关键词 Microbial cell factories Cell-free systems OVERPRODUCTION Agroclavine Ergot alkaloids
原文传递
Data-Driven Synthetic Cell Factories Development for Industrial Biomanufacturing
20
作者 Zhenkun Shi Pi Liu +6 位作者 Xiaoping Liao Zhitao Mao Jianqi Zhang Qinhong Wang Jibin Sun Hongwu Ma Yanhe Ma 《BioDesign Research》 2022年第1期236-247,共12页
Revolutionary breakthroughs in artificial intelligence (AI) and machine learning (ML) have had a profound impact on a widerange of scientific disciplines, including the development of artificial cell factories for bio... Revolutionary breakthroughs in artificial intelligence (AI) and machine learning (ML) have had a profound impact on a widerange of scientific disciplines, including the development of artificial cell factories for biomanufacturing. In this paper, wereview the latest studies on the application of data-driven methods for the design of new proteins, pathways, and strains. Wefirst briefly introduce the various types of data and databases relevant to industrial biomanufacturing, which are the basis fordata-driven research. Different types of algorithms, including traditional ML and more recent deep learning methods, are alsopresented. We then demonstrate how these data-based approaches can be applied to address various issues in cell factorydevelopment using examples from recent studies, including the prediction of protein function, improvement of metabolicmodels, and estimation of missing kinetic parameters, design of non-natural biosynthesis pathways, and pathway optimization.In the last section, we discuss the current limitations of these data-driven approaches and propose that data-driven methodsshould be integrated with mechanistic models to complement each other and facilitate the development of synthetic strains forindustrial biomanufacturing. 展开更多
关键词 artificial BREAKTHROUGH MANUFACTURING
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部