期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Temporal Dynamics and Performance Association of the Tetrasphaera-Enriched Microbiome for Enhanced Biological Phosphorus Removal
1
作者 Hui Wang Yubo Wang +2 位作者 Guoqing Zhang Ze Zhao Feng Ju 《Engineering》 SCIE EI CAS CSCD 2023年第10期168-178,共11页
Tetrasphaera have been recently identified based on the 16S ribosomal RNA(rRNA)gene as among the most abundant polyphosphate-accumulating organisms(PAOs)in global full-scale wastewater treatment plants(WWTPs)with enha... Tetrasphaera have been recently identified based on the 16S ribosomal RNA(rRNA)gene as among the most abundant polyphosphate-accumulating organisms(PAOs)in global full-scale wastewater treatment plants(WWTPs)with enhanced biological phosphorus removal(EBPR).However,it is unclear how Tetrasphaera PAOs are selectively enriched in the context of the EBPR microbiome.In this study,an EBPR microbiome enriched with Tetrasphaera(accounting for 40%of 16S sequences on day 113)was built using a top-down design approach featuring multicarbon sources and a low dosage of allylthiourea.The microbiome showed enhanced nutrient removal(phosphorus removal~85%and nitrogen removal~80%)and increased phosphorus recovery(up to 23.2 times)compared with the seeding activated sludge from a local full-scale WWTP.The supply of 1 mg·L^(-1)allylthiourea promoted the coselection of Tetrasphaera PAOs and Microlunatus PAOs and sharply reduced the relative abundance of both ammonia oxidizer Nitrosomonas and putative competitors Brevundimonas and Paracoccus,facilitating the establishment of the EBPR microbiome.Based on 16S rRNA gene analysis,a putative novel PAO species,EBPR-ASV0001,was identified with Tetrasphaera japonica as its closest relative.This study provides new knowledge on the establishment of a Tetrasphaera-enriched microbiome facilitated by allylthiourea,which can be further exploited to guide future process upgrading and optimization to achieve and/or enhance simultaneous biological phosphorus and nitrogen removal from high-strength wastewater. 展开更多
关键词 Enhanced biological phosphorus removal(EBPR) Polyphosphate-accumulating organisms(PAOs) Tetrasphaera MICROBIOME Phosphorus recovery
下载PDF
Biomanufacturing boosts the high-level development of economy and society
2
作者 Chun Li An-Ping Zeng Ying-Jin Yuan 《Green Chemical Engineering》 EI CSCD 2023年第2期135-136,共2页
Global society requires new technologies for manufacturing essential chemicals for modern life that are decoupled from fossil fuels.Therefore,Green Chemical Engineering focuses on the areas of green and sustain-able d... Global society requires new technologies for manufacturing essential chemicals for modern life that are decoupled from fossil fuels.Therefore,Green Chemical Engineering focuses on the areas of green and sustain-able development of chemistry and chemical engineering,among which biomanufacturing is an attractive topic. 展开更多
关键词 BOOST ATTRACTIVE CHEMICALS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部