Cover crops can have beneficial effects on soil microbiology by increasing carbon (C) supply, but these beneficial effects can be modulated by precipitation conditions. The objective of this study was to compare a f...Cover crops can have beneficial effects on soil microbiology by increasing carbon (C) supply, but these beneficial effects can be modulated by precipitation conditions. The objective of this study was to compare a fallow-winter wheat (Triticum aestivum L.) rotation to several cover crop-winter wheat rotations under rainfed and irrigated conditions in the semiarid US High Plains. Experiments were carried out at two sites, Sidney in Nebraska, and Akron in Colorado, USA, with three times of soil sampling in 2012--2013 at cover crop termination, wheat planting, and wheat maturity. The experiments included four single-species cover crops, a 10-species mixture, and a fallow treatment. The variables measured were soil C and nitrogen (N), soil community structure by fatty acid methyl ester (FAME) profiles, and soil β-glucosidase,β-glucosaminidase, and phosphodiesterase activities. The fallow treatment, devoid of living plants, reduced the concentrations of most FAMEs at cover crop termination. The total FAME concentration was correlated with cover crop biomass (R = 0.62 at Sidney and 0.44 at Akron). By the time of wheat planting, there was a beneficial effect of irrigation, which caused an increase in myeorrhizal and protozoan markers. At wheat maturity, the cover crop and irrigation effects on soil FAMEs had subsided, but irrigation had a positive effect on the β-glucosidase and phosphodiesterase activities at Akron, which was the drier of the two sites. Cover crops and irrigation were slow to impact soil C concentration. Our results show that cover crops had a short-lived effect on soil microbial communities in semiarid wheat-based rotations and irrigation could enhance soil enzyme activity. In the semiarid environment, longer time spans may have been needed to see beneficial effects of cover crops on soil microbial community structure, soil enzyme activities, and soil C sequestration.展开更多
A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk den...A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk density and water conditions caused by previous tillage, crop rotation, and irrigation management. Water deficit stress (Dstress) was quantified by the number of days when the water content in the surface 0.3 m deviated from the water content range determined by the Least Limiting Water Range (LLWR). Root and shoot samples were collected at the V6, V12, and R1 growth stages. There was no significant correlation between Dstress and shoot or root biomass at the V6 growth stage. At the V12 and R1 growth stages, there were negative, linear correlations among Dstress and both root biomass and shoot biomass. The proportional decrease of shoot biomass was greater than the proportional decrease in root biomass, leading to an increase in the root:shoot ratio as water deficit stress increased at all growth stages. Determining restrictive soil conditions using the LLWR may be useful for evaluating improvement or degradation of the soil physical environment caused by soil management.展开更多
Aggregation and structure play key roles in water-holding capacity and stability of soils.In this study,the incorporation of carbon(C) from switchgrass biochar into stable aggregate size fractions was assessed in an A...Aggregation and structure play key roles in water-holding capacity and stability of soils.In this study,the incorporation of carbon(C) from switchgrass biochar into stable aggregate size fractions was assessed in an Aridisol(from Colorado,USA) dominated by 2:1 clays and an Alfisol(from Virginia,USA) containing weathered mixed 1:1 and 2:1 mineralogy,to evaluate the effect of biochar addition on soil characteristics.The biochar was applied at 4 levels,0,25,50,and 100 g kg^(-1),to the soils grown with wheat in a growth chamber experiment.The changes in soil strength and water-holding capacity using water release curves were measured.In the Colorado soil,the proportion of soil occurring in large aggregates decreased,with concomitant increases in small size fractions.No changes in aggregate size fractions occurred in the Virginia soil.In the Colorado soil,C content increased from 3.3 to 16.8 g kg^(-1),whereas in the<53 μm fraction C content increased from 5.7 to 22.6 g kg^(-1) with 100 g kg^(-1)biochar addition.In the Virginia soil,C content within aggregate size fractions increased for each size fraction,except the>2 000 μm fraction.The greatest increase(from 6.2 to 22.0 g kg^(-1)) occurred in the 53–250 μm fraction.The results indicated that C was incorporated into larger aggregates in the Virginia soil,but remained largely unassociated to soil particles in the Colorado soil.Biochar addition had no significant effect on water-holding capacity or strength measurements.Adding biochar to more weathered soils with high native soil organic content may result in greater stabilization of incorporated C and result in less loss because of erosion and transport,compared with the soils dominated by 2:1 clays and low native soil organic content.展开更多
Organic agricultural systems rely on organic amendments to achieve crop fertility requirements, and weed control must be achieved without synthetic herbicides. Our objective was to determine the crop yield and soil qu...Organic agricultural systems rely on organic amendments to achieve crop fertility requirements, and weed control must be achieved without synthetic herbicides. Our objective was to determine the crop yield and soil quality as affected by a transition from grass to dryland organic agriculture in the Central Great Plains of North America. This study evaluated three beef feedlot compost(BFC)treatments in 2010–2015 following biennial application rates: 0(control), 22.9, and 108.7 t ha^(-1) on two dryland organic cropping systems: a wheat(Triticum aestivum)-fallow(WF) rotation harvested for grain and a triticale(Triticosecale)/pea(Pisum sativum)-fallow(T/P-F) rotation harvested for forage. The triticale + pea biomass responded positively to the 108.7-t ha^(-1) BFC treatment,but not the 22.9-t ha^(-1) BFC treatment. The wheat biomass was not affected by BFC addition, but biomass N content increased.Beef feedlot compost input did not increase wheat grain yields, but had a positive effect on wheat grain Zn content. Soil total C and N contents increased with the rate of 108.7 t ha^(-1) BFC after three applications, but not with 22.9 t ha^(-1) BFC. Soil enzyme activities associated with N and C cycling responded positively to the 108.7-t ha^(-1) BFC treatment. Saturated salts were high in the soil receiving 108.7 t ha^(-1) of BFC, but did not affect crop yields. These results showed that BFC was effective in enhancing forage yields, wheat grain quality, and soil C and N, as well as specific microbial enzymes important for nutrient cycling. However, the large rates of BFC necessary to elicit these positive responses did not increase grain yields, and resulted in an excessive buildup of soil P.展开更多
文摘Cover crops can have beneficial effects on soil microbiology by increasing carbon (C) supply, but these beneficial effects can be modulated by precipitation conditions. The objective of this study was to compare a fallow-winter wheat (Triticum aestivum L.) rotation to several cover crop-winter wheat rotations under rainfed and irrigated conditions in the semiarid US High Plains. Experiments were carried out at two sites, Sidney in Nebraska, and Akron in Colorado, USA, with three times of soil sampling in 2012--2013 at cover crop termination, wheat planting, and wheat maturity. The experiments included four single-species cover crops, a 10-species mixture, and a fallow treatment. The variables measured were soil C and nitrogen (N), soil community structure by fatty acid methyl ester (FAME) profiles, and soil β-glucosidase,β-glucosaminidase, and phosphodiesterase activities. The fallow treatment, devoid of living plants, reduced the concentrations of most FAMEs at cover crop termination. The total FAME concentration was correlated with cover crop biomass (R = 0.62 at Sidney and 0.44 at Akron). By the time of wheat planting, there was a beneficial effect of irrigation, which caused an increase in myeorrhizal and protozoan markers. At wheat maturity, the cover crop and irrigation effects on soil FAMEs had subsided, but irrigation had a positive effect on the β-glucosidase and phosphodiesterase activities at Akron, which was the drier of the two sites. Cover crops and irrigation were slow to impact soil C concentration. Our results show that cover crops had a short-lived effect on soil microbial communities in semiarid wheat-based rotations and irrigation could enhance soil enzyme activity. In the semiarid environment, longer time spans may have been needed to see beneficial effects of cover crops on soil microbial community structure, soil enzyme activities, and soil C sequestration.
文摘A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk density and water conditions caused by previous tillage, crop rotation, and irrigation management. Water deficit stress (Dstress) was quantified by the number of days when the water content in the surface 0.3 m deviated from the water content range determined by the Least Limiting Water Range (LLWR). Root and shoot samples were collected at the V6, V12, and R1 growth stages. There was no significant correlation between Dstress and shoot or root biomass at the V6 growth stage. At the V12 and R1 growth stages, there were negative, linear correlations among Dstress and both root biomass and shoot biomass. The proportional decrease of shoot biomass was greater than the proportional decrease in root biomass, leading to an increase in the root:shoot ratio as water deficit stress increased at all growth stages. Determining restrictive soil conditions using the LLWR may be useful for evaluating improvement or degradation of the soil physical environment caused by soil management.
文摘Aggregation and structure play key roles in water-holding capacity and stability of soils.In this study,the incorporation of carbon(C) from switchgrass biochar into stable aggregate size fractions was assessed in an Aridisol(from Colorado,USA) dominated by 2:1 clays and an Alfisol(from Virginia,USA) containing weathered mixed 1:1 and 2:1 mineralogy,to evaluate the effect of biochar addition on soil characteristics.The biochar was applied at 4 levels,0,25,50,and 100 g kg^(-1),to the soils grown with wheat in a growth chamber experiment.The changes in soil strength and water-holding capacity using water release curves were measured.In the Colorado soil,the proportion of soil occurring in large aggregates decreased,with concomitant increases in small size fractions.No changes in aggregate size fractions occurred in the Virginia soil.In the Colorado soil,C content increased from 3.3 to 16.8 g kg^(-1),whereas in the<53 μm fraction C content increased from 5.7 to 22.6 g kg^(-1) with 100 g kg^(-1)biochar addition.In the Virginia soil,C content within aggregate size fractions increased for each size fraction,except the>2 000 μm fraction.The greatest increase(from 6.2 to 22.0 g kg^(-1)) occurred in the 53–250 μm fraction.The results indicated that C was incorporated into larger aggregates in the Virginia soil,but remained largely unassociated to soil particles in the Colorado soil.Biochar addition had no significant effect on water-holding capacity or strength measurements.Adding biochar to more weathered soils with high native soil organic content may result in greater stabilization of incorporated C and result in less loss because of erosion and transport,compared with the soils dominated by 2:1 clays and low native soil organic content.
文摘Organic agricultural systems rely on organic amendments to achieve crop fertility requirements, and weed control must be achieved without synthetic herbicides. Our objective was to determine the crop yield and soil quality as affected by a transition from grass to dryland organic agriculture in the Central Great Plains of North America. This study evaluated three beef feedlot compost(BFC)treatments in 2010–2015 following biennial application rates: 0(control), 22.9, and 108.7 t ha^(-1) on two dryland organic cropping systems: a wheat(Triticum aestivum)-fallow(WF) rotation harvested for grain and a triticale(Triticosecale)/pea(Pisum sativum)-fallow(T/P-F) rotation harvested for forage. The triticale + pea biomass responded positively to the 108.7-t ha^(-1) BFC treatment,but not the 22.9-t ha^(-1) BFC treatment. The wheat biomass was not affected by BFC addition, but biomass N content increased.Beef feedlot compost input did not increase wheat grain yields, but had a positive effect on wheat grain Zn content. Soil total C and N contents increased with the rate of 108.7 t ha^(-1) BFC after three applications, but not with 22.9 t ha^(-1) BFC. Soil enzyme activities associated with N and C cycling responded positively to the 108.7-t ha^(-1) BFC treatment. Saturated salts were high in the soil receiving 108.7 t ha^(-1) of BFC, but did not affect crop yields. These results showed that BFC was effective in enhancing forage yields, wheat grain quality, and soil C and N, as well as specific microbial enzymes important for nutrient cycling. However, the large rates of BFC necessary to elicit these positive responses did not increase grain yields, and resulted in an excessive buildup of soil P.