Background:Hypoxic microenvironment is immunosuppressive and protu-morigenic,and elevated lactate is an intermediary in the modulation of immune responses.However,as critical lactate transporters,the role of SLC16A1 a...Background:Hypoxic microenvironment is immunosuppressive and protu-morigenic,and elevated lactate is an intermediary in the modulation of immune responses.However,as critical lactate transporters,the role of SLC16A1 and SLC16A3 in immune infiltration and evasion of glioma is not fully elucidated.Methods:Gene expression in low‐and high‐grade glioma(LGG and GBM)was evaluated with TCGA database.The TISIDB,TIMER and CIBERSORT databases were utilized for the analysis of the correlation between SLC16A1 or SLC16A3 and immunocyte infiltration as well as immune checkpoints.Results:Compared with normal tissues,a significant increase of both SLC16A1 and SLC16A3 was found in LGG and GBM,and closely related to the poor prognosis only in LGG.Cancer SEA indicated that SLC16A1 was involved in hypoxia while SLC16A3 contributed to metastasis and inflamma-tion in glioma.The SLC16A3 expression was significantly correlated with neutrophil activation by GO analysis.TISCH showed the distribution of SLC16A1 on glioma cells and SLC16A3 on immune cells,which was correlated to tumor‐associated macrophages and neutrophils that are immunosuppressive.SLC16A1 and SLC16A3 were identified to tightly interacted with diverse immune checkpoints(especially PD1,PD‐L1,PD‐L2,Tim‐3)and immunosuppressive factors(TGF‐βand IL‐10)in glioma.Furthermore,SLC16A3 had a positive correlation to activation markers of tumor‐associated neutrophils and chemokines such as CCL2,CCL22,CXCR2,CXCR4 in LGG and CCL7,CCL20 CXCL8 in GBM,which could enhance infiltration of immunosuppressive cells to the tumor microenvironment.Conclusion:In general,our results suggest that SLC16A1 and SLC16A3 act as a bridge between tumor metabolism and immunity by promoting immuno-suppressive cell infiltration,which contributes to immune evasion and a worse prognosis in glioma.Targeting SLC16A1 and SLC16A3 may provide novel therapeutic strategy for immunotherapy in glioma.展开更多
基金Ningbo Health Branding Subject Fund,Grant/Award Number:PPXK2018‐04Zhejiang Medical and Health Science&Technology Project,Grant/Award Number:2020KY826National Natural Science Foundation of China,Grant/Award Number:81903144。
文摘Background:Hypoxic microenvironment is immunosuppressive and protu-morigenic,and elevated lactate is an intermediary in the modulation of immune responses.However,as critical lactate transporters,the role of SLC16A1 and SLC16A3 in immune infiltration and evasion of glioma is not fully elucidated.Methods:Gene expression in low‐and high‐grade glioma(LGG and GBM)was evaluated with TCGA database.The TISIDB,TIMER and CIBERSORT databases were utilized for the analysis of the correlation between SLC16A1 or SLC16A3 and immunocyte infiltration as well as immune checkpoints.Results:Compared with normal tissues,a significant increase of both SLC16A1 and SLC16A3 was found in LGG and GBM,and closely related to the poor prognosis only in LGG.Cancer SEA indicated that SLC16A1 was involved in hypoxia while SLC16A3 contributed to metastasis and inflamma-tion in glioma.The SLC16A3 expression was significantly correlated with neutrophil activation by GO analysis.TISCH showed the distribution of SLC16A1 on glioma cells and SLC16A3 on immune cells,which was correlated to tumor‐associated macrophages and neutrophils that are immunosuppressive.SLC16A1 and SLC16A3 were identified to tightly interacted with diverse immune checkpoints(especially PD1,PD‐L1,PD‐L2,Tim‐3)and immunosuppressive factors(TGF‐βand IL‐10)in glioma.Furthermore,SLC16A3 had a positive correlation to activation markers of tumor‐associated neutrophils and chemokines such as CCL2,CCL22,CXCR2,CXCR4 in LGG and CCL7,CCL20 CXCL8 in GBM,which could enhance infiltration of immunosuppressive cells to the tumor microenvironment.Conclusion:In general,our results suggest that SLC16A1 and SLC16A3 act as a bridge between tumor metabolism and immunity by promoting immuno-suppressive cell infiltration,which contributes to immune evasion and a worse prognosis in glioma.Targeting SLC16A1 and SLC16A3 may provide novel therapeutic strategy for immunotherapy in glioma.