Half of all long-term(> 10 year) australian kidney transplant recipients(KTR) will develop squamous cell carcinoma(SCC) or solid organ cancer(SOC), making cancer the leading cause of death with a functioning graft....Half of all long-term(> 10 year) australian kidney transplant recipients(KTR) will develop squamous cell carcinoma(SCC) or solid organ cancer(SOC), making cancer the leading cause of death with a functioning graft. At least 30% of KTR with a history of SCC or SOC will develop a subsequent SCC orSOC lesion. Pharmacological immunosuppression is a major contributor of the increased risk of cancer for KTR, with the cancer lesions themselves further adding to systemic immunosuppression and could explain, in part, these phenomena. Immune profiling includes; measuring immunosuppressive drug levels and pharmacokinetics, enumerating leucocytes and leucocyte subsets as well as testing leucocyte function in either an antigen specific or non-specific manner. Outputs can vary from assay to assay according to methods used. In this review we define the rationale behind post-transplant immune monitoring assays and focus on assays that associate and/or have the ability to predict cancer and rejection in the KTR. We find that immune monitoring can identify those KTR of developing multiple SCC lesions and provide evidence they may benefit from pharmacological immunosuppressive drug dose reductions. In these KTR risk of rejection needs to be assessed to determine if reduction of immunosuppression will not harm the graft.展开更多
The long term consequence of immunosuppressive therapy in kidney transplantation has prompted investigation of alternative means to modify the immune response to the allograft. Cell based therapies are potentially att...The long term consequence of immunosuppressive therapy in kidney transplantation has prompted investigation of alternative means to modify the immune response to the allograft. Cell based therapies are potentially attractive as they may provide a long lasting immunomodulatory effect, may repair tissues and reduce the necessity to take immunosuppressive drug therapy. Of the current cell therapies, mesenchymal stem cells have now been trialled in small numbers of human kidney transplantation with apparent safety and potential efficacy. Many issues however need to be resolved before these cells will become mainstays of transplant immunosuppression including ex vivo modification to enhance immunomodulatory properties, cell number, route and frequency of administration as well as cellular source of origin.展开更多
文摘Half of all long-term(> 10 year) australian kidney transplant recipients(KTR) will develop squamous cell carcinoma(SCC) or solid organ cancer(SOC), making cancer the leading cause of death with a functioning graft. At least 30% of KTR with a history of SCC or SOC will develop a subsequent SCC orSOC lesion. Pharmacological immunosuppression is a major contributor of the increased risk of cancer for KTR, with the cancer lesions themselves further adding to systemic immunosuppression and could explain, in part, these phenomena. Immune profiling includes; measuring immunosuppressive drug levels and pharmacokinetics, enumerating leucocytes and leucocyte subsets as well as testing leucocyte function in either an antigen specific or non-specific manner. Outputs can vary from assay to assay according to methods used. In this review we define the rationale behind post-transplant immune monitoring assays and focus on assays that associate and/or have the ability to predict cancer and rejection in the KTR. We find that immune monitoring can identify those KTR of developing multiple SCC lesions and provide evidence they may benefit from pharmacological immunosuppressive drug dose reductions. In these KTR risk of rejection needs to be assessed to determine if reduction of immunosuppression will not harm the graft.
文摘The long term consequence of immunosuppressive therapy in kidney transplantation has prompted investigation of alternative means to modify the immune response to the allograft. Cell based therapies are potentially attractive as they may provide a long lasting immunomodulatory effect, may repair tissues and reduce the necessity to take immunosuppressive drug therapy. Of the current cell therapies, mesenchymal stem cells have now been trialled in small numbers of human kidney transplantation with apparent safety and potential efficacy. Many issues however need to be resolved before these cells will become mainstays of transplant immunosuppression including ex vivo modification to enhance immunomodulatory properties, cell number, route and frequency of administration as well as cellular source of origin.