期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
In vivo performance of a rare earth free Mg-Zn-Ca alloy manufactured using twin roll casting for potential applications in the cranial and maxillofacial fixation devices 被引量:2
1
作者 Matthew S.Dargusch Nagasivamuni Balasubramani +10 位作者 Nan Yang Sean Johnston Yahia Ali Gui Wang Jeffrey Venezuela Jiwon Carluccio Cora Lau Rachel Allavena Daniel Liang Karine Mardon Qingsong Ye 《Bioactive Materials》 SCIE 2022年第6期85-96,共12页
A magnesium alloy containing essential,non-toxic,biodegradable elements such as Ca and Zn has been fabricated using a novel twin-roll casting process(TRC).Microstructure,mechanical properties,in vivo corrosion and bio... A magnesium alloy containing essential,non-toxic,biodegradable elements such as Ca and Zn has been fabricated using a novel twin-roll casting process(TRC).Microstructure,mechanical properties,in vivo corrosion and biocompatibility have been assessed and compared to the properties of the rare earth(RE)element containing WE43 alloy.TRC Mg-0.5 wt% Zn-0.5 wt% Ca exhibited fine grains with an average grain size ranging from 70 to 150μm.Mechanical properties of a TRC Mg-0.5Zn-0.5Ca alloy showed an ultimate tensile strength of 220 MPa and ductility of 9.3%.The TRC Mg-0.5Zn-0.5Ca alloy showed a degradation rate of 0.51±0.07 mm/y similar to that of the WE43 alloy(0.47±0.09 mm/y)in the rat model after 1 week of implantation.By week 4 the biodegradation rates of both alloys studied were lowered and stabilized with fewer gas pockets around the implant.The histological analysis shows that both WE43 and TRC Mg-0.5Zn-0.5Ca alloy triggered comparable tissue healing responses at respective times of implantation.The presence of more organized scarring tissue around the TRC Mg-0.5Zn-0.5Ca alloys suggests that the biodegradation of the RE-free alloy may be more conducive to the tissue proliferation and remodelling process. 展开更多
关键词 Mg-Zn-Ca alloy Twin-roll strip casting In vivo degradation BIOCOMPATIBILITY Biodegradable implants
原文传递
Propagation of tau and α-synuclein in the brain: therapeutic potential of the glymphatic system 被引量:1
2
作者 Douglas M.Lopes Sophie K.Llewellyn Ian F.Harrison 《Translational Neurodegeneration》 SCIE 2022年第1期667-689,共23页
Many neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease, are characterised by the accumulation of misfolded protein deposits in the brain, leading to a progressive destabilisation of t... Many neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease, are characterised by the accumulation of misfolded protein deposits in the brain, leading to a progressive destabilisation of the neuronal network and neuronal death. Among the proteins that can abnormally accumulate are tau and α-synuclein, which can propagate in a prion-like manner and which upon aggregation, represent the most common intracellular proteinaceous lesions associated with neurodegeneration. For years it was thought that these intracellular proteins and their accumulation had no immediate relationship with extracellular homeostasis pathways such as the glymphatic clearance system;however, mounting evidence has now suggested that this is not the case. The involvement of the glymphatic system in neurodegenerative disease is yet to be fully defined;however, it is becoming increasingly clear that this pathway contributes to parenchymal solute clearance. Importantly, recent data show that proteins prone to intracellular accumulation are subject to glymphatic clearance, suggesting that this system plays a key role in many neurological disorders. In this review, we provide a background on the biology of tau and α-synuclein and discuss the latest findings on the cell-to-cell propagation mechanisms of these proteins. Importantly, we discuss recent data demonstrating that manipulation of the glymphatic system may have the potential to alleviate and reduce pathogenic accumulation of propagation-prone intracellular cytotoxic proteins. Furthermore, we will allude to the latest potential therapeutic opportunities targeting the glymphatic system that might have an impact as disease modifiers in neurodegenerative diseases. 展开更多
关键词 Glymphatic PROPAGATION TAUOPATHY SYNUCLEINOPATHY CLEARANCE AQUAPORIN-4
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部