Development of suitable materials that acts as an interface between the implant and tissues in body system structurally, mechanically and bio functionally is important for the success of tissue engineering. This motiv...Development of suitable materials that acts as an interface between the implant and tissues in body system structurally, mechanically and bio functionally is important for the success of tissue engineering. This motivated materials scientists and biologists to find out suitable bioactive materials for the aforementioned purpose. There has been growing interest in developing bioactive synthetic ceramics that could closely mimic natural apatite characteristics. Hydroxyapatite (HAp) has been widely used as a biocompatible ceramic but mainly for contact with bone tissue, due to its resemblance to mineral bone. This study presents the synthesis and characterization of HAp materials from different sources like bovine bone and fish scales and their application in tissue engineering. The phase purity and crystallinity of different calcined HAp powder was determined by XRD and FTIR analysis. The Thermo Gravimetric and Differential Thermal Analysis were carried out to show the thermal stability of the HAp powder. The morphology of the powder was observed under Scanning Electron Microscopy (SEM). Cytotoxicity evaluation of the developed powder was carried out in RAW macrophage like cell line media for an incubation period of 72 hours. These results proved the biocompatibility of HAp powders obtained from different biosources for tissue engineering applications.展开更多
This review summarizes recent insights into the Mg corrosion mechanism, clarifies many critical controversial points regarding the Mg corrosion behaviour, and updates some efforts made to extend the industrial applica...This review summarizes recent insights into the Mg corrosion mechanism, clarifies many critical controversial points regarding the Mg corrosion behaviour, and updates some efforts made to extend the industrial application of Mg alloys. Based on the new understandings gained so far, future research directions are also suggested in the review. This review has the following logic. The first section "1. Scope"is a consolidation of the new understandings or developments regarding the Mg corrosion mechanism and the new applications for Mg alloys. It also highlights some key points for the review. The second section "2. Widely accepted knowledge" briefly summarizes the general understanding of Mg corrosion gained so far, which acts as the foundation for the following sections. The third section "3. Recently deepened insights" mainly briefs on some new insights into Mg corrosion phenomena based on recent findings. Different interpretations on the corrosion behaviours are comprehensively discussed in the fourth section "4. Controversial points" and the conclusions are drawn in the subsection"4.5 Clarified points". Apart from the fundamental understandings, various efforts in the application of Mg alloys are presented in the fifth section "5. New applications". Following the research tendency as indicated in the review, prioritized research areas are suggested in "6.Future directions". The review is concluded with "7. Concluding remarks" at last.展开更多
UHP Mg-Ge alloys was recently found to provide excellent corrosion resistance.This paper provides new insights on the mechanism of improved corrosion resistance of UHP Mg-Ge alloys in Hanks’solution.The studied UHP M...UHP Mg-Ge alloys was recently found to provide excellent corrosion resistance.This paper provides new insights on the mechanism of improved corrosion resistance of UHP Mg-Ge alloys in Hanks’solution.The studied UHP Mg-0.5Ge and UHP Mg-1Ge alloys showed superior corrosion resistance compared to UHP Mg and WE43,with the Mg-1Ge exhibiting the best corrosion performance.The exceptional corrosion resistance of the UHP alloy is attributed to(i)Mg_(2)Ge’s ability to suppress cathodic kinetics,(ii)Ge’s capability to accelerate the formation of a highly passive layer,and the(iii)low amounts of corrosion-accelerating impurities.展开更多
Ultrasonic treatment(UST)applied during the solidification of pure Mg,eutectic(Mg-Zn)and peritectic(Mg-Zr)alloys was investigated in order to explore the grain refinement mechanisms.Temperature dependent grain refinem...Ultrasonic treatment(UST)applied during the solidification of pure Mg,eutectic(Mg-Zn)and peritectic(Mg-Zr)alloys was investigated in order to explore the grain refinement mechanisms.Temperature dependent grain refinement is observed in pure Mg where decreasing the superheat temperature(at which UST is applied from above the melting temperature,TM)from 100℃to 40℃produces significant refinement with a uniform grain structure.The presence of solute reduces the temperature dependence of the UST refinement and excellent grain refinement is obtained regardless of the superheat temperature(100℃or 40℃)and even with the use of preheated sonotrode in the Mg-6 wt.%Zn alloy.A further improvement in grain refinement is achieved when the alloy contains potent particles that introduce additional nucleation of grains in Mg-0.5 and 1.0 wt.%Zr alloys(producing an average grain size of≤100μm).At 40℃superheat,UST of Mg-Zn alloys produces excellent refinement(average grain size<200μm)with non-dendritic grains,which is normally achieved only with the addition of grain refining master alloy in the as-cast condition.The enhanced refinement observed in the eutectic alloy is explained through the undercooling imposed by a relatively cold sonotrode combined with high frequency vibrations and acoustic streaming.The advantages of using a cold sonotrode,a low superheat and solute are demonstrated for achieving significant refinement during solidification of Mg alloys under UST without or with a lower addition of grain refining master alloys.展开更多
We measured the anodic hydrogen evolution rates for various applied anodic current densities and estimated the corresponding cathodic hydrogen evolution rates.The estimated cathodic hydrogen evolution rates were less ...We measured the anodic hydrogen evolution rates for various applied anodic current densities and estimated the corresponding cathodic hydrogen evolution rates.The estimated cathodic hydrogen evolution rates were less than the measured anodic hydrogen evolution rates,contradicting the enhanced catalytic activity mechanism of Mg corrosion.In addition,this model was contradicted by the measured apparent Mg valence of 1.2±0.1.In contrast,the uni-positive Mg^(+)mechanism of Mg corrosion was supported by(i)the apparent Mg valence of 1.2±0.1,and(ii)the fact that the measured anodic hydrogen evolution rate increased with increasing weight loss rate.展开更多
A review of the literature confirmed that the intrinsic corrosion rate of high-purity Mg as measured by weight-loss is 0.3mm/y in a concentrated chloride solution.Atmospheric corrosion of Mg alloys has produced corros...A review of the literature confirmed that the intrinsic corrosion rate of high-purity Mg as measured by weight-loss is 0.3mm/y in a concentrated chloride solution.Atmospheric corrosion of Mg alloys has produced corrosion rates of Mg-Al alloys an order of magnitude lower than the intrinsic corrosion rate of Mg in a concentrated chloride solution of 0.3 mm/y.The only successful strategy to produce a Mg alloy with a corrosion rate in a concentrated chloride solution substantially less than the intrinsic corrosion rate as measured by weight loss of Mg of 0.3 mm/y has been to improve the protectiveness of the corrosion product film.展开更多
Commercial pure Al can be refined by Pulsed Magneto-Oscillation(PMO) treatment applied via a plate induction coil above the top surface of the melt. The proportion of the equiaxed zone area increases with decreasing H...Commercial pure Al can be refined by Pulsed Magneto-Oscillation(PMO) treatment applied via a plate induction coil above the top surface of the melt. The proportion of the equiaxed zone area increases with decreasing Height to Diameter(H/D) ratios from 3.5 to1.8 and further to 1.0. Meanwhile, it increases and then decreases with increasing peak current for the three kinds of ingots with H/D ratios of 3.5, 1.8 and 1.0, respectively. However, when the H/D ratio decreases to 0.44, the area proportion of equiaxed zone can reach the maximum value with a lower peak current. FEA software simulation indicates that smaller H/D ratio results in larger current density, electromagnetic force and convection on the top surface of the melt, favoring nucleation and subsequent grain formation. Through evaluating Joule heating effect by PMO, it was found that the proper amount of Joule heating benefits grain refinement. Excessive Joule heating can reduce the size of the equiaxed zone and change the growth morphology of the grains.展开更多
The effects of Sr additions on the microstructure and corrosion performance of a Mg-Al-RE alloy in 3.5 wt.%Na Cl saturated with Mg(OH)_(2) have been investigated.Microstructure examination reveals that the Sr addition...The effects of Sr additions on the microstructure and corrosion performance of a Mg-Al-RE alloy in 3.5 wt.%Na Cl saturated with Mg(OH)_(2) have been investigated.Microstructure examination reveals that the Sr addition introduces additional intermetallic phases,refines intermetallic networks and dendritic grains,and improves the network continuity.More Al and rare earth elements can be identified in the intermetallics and grain boundaries or inter-dendrite regions under a transmission electron microscope and secondary electron microscope,respectively.On the Sr-containing intermetallic phases and the refined microstructure,the oxide films become more protective,resulting in more corrosion resistant boundary areas and thus dendrite grain grooves.Hence,the presence of large amounts of intermetallics and boundaries can enhance the corrosion performance of the Mg-Al-RE alloy containing Sr.展开更多
A yttrium-containing high-temperature titanium alloy(Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45Si-0.1Y, mass fraction, %) has been additively manufactured using selective electron beam melting(SEBM). The resulting microstructure and...A yttrium-containing high-temperature titanium alloy(Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45Si-0.1Y, mass fraction, %) has been additively manufactured using selective electron beam melting(SEBM). The resulting microstructure and textures were studied using scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and electron backscattered diffraction(EBSD) and compared with the conventionally manufactured form. A notable distinct difference of microstructures is that additive manufacturing by SEBM enables homogeneous precipitation of fine Y2O3 dispersoids in the size range of 50-250 nm throughout the as-fabricated alloy, despite the presence of just trace levels of oxygen(7×10-4, mass fraction) and yttrium(10-3, mass fraction) in the alloy. In contrast, the conventionally manufactured alloy shows inhomogeneously distributed coarse Y2O3 precipitates, including cracked or debonded Y2O3 particles.展开更多
Magnesium alloys such as Mg–Ca and Mg–Zn–Ca are good orthopaedic materials;however their tendency to corrode is high.Herein we utilize selective laser melting(SLM)to modify the surface of these Mg alloys to simulta...Magnesium alloys such as Mg–Ca and Mg–Zn–Ca are good orthopaedic materials;however their tendency to corrode is high.Herein we utilize selective laser melting(SLM)to modify the surface of these Mg alloys to simultaneously improve the corrosion behaviour and microhardness.The corrosion rate decreased from 2.1±0.2 mm/y to 1.0±0.1 mm/y for the laser-processed Mg–0.6Ca,and from 1.6±0.1 mm/y to 0.7±0.2 mm/y for laser-processed Mg–0.5Zn–0.3Ca.The microhardness increased from 46±1 HV to 56±1 HV for Mg–0.6Ca,and from 47±3 HV to 55±3 HV for Mg–0.5Zn–0.3Ca.In addition,good biocompatibility remained in the laser processed Mg alloys.The improved properties are attributed to laser-induced grain refinement,confined impurity elements,residual stress,and modified surface chemistry.The results demonstrated the potential of SLM as a surface engineering approach for developing advanced biomedical Mg alloys.展开更多
Stress corrosion cracking(SCC)in distilled water was studied for AZ31,processed by differential-speed-rolling to different strengths,using Linear Increasing Stress Tests(LISTs).The stress corrosion crack velocity was ...Stress corrosion cracking(SCC)in distilled water was studied for AZ31,processed by differential-speed-rolling to different strengths,using Linear Increasing Stress Tests(LISTs).The stress corrosion crack velocity was 5.0±2.5×10^(−9) m s^(−1),independent of applied stress rate and independent of material strength.SCC susceptibility was greater at lower applied stress rates manifest most importantly as a lower threshold stress for stress corrosion crack initiation.SCC susceptibility could be characterised by the ratio of threshold stress to yield stress,which was dependent on processing details and was as low as 0.3.展开更多
Several detailed studies have comprehensively investigated the benefits and limitations of laser-assisted machining(LAM)of titanium alloys.These studies have highlighted the positive impact of the application of laser...Several detailed studies have comprehensively investigated the benefits and limitations of laser-assisted machining(LAM)of titanium alloys.These studies have highlighted the positive impact of the application of laser preheating on reducing cutting forces and improving productivity but have also identified the detrimental effect of LAM on tool life.This paper seeks to evaluate a series of the most common cutting tools with different coating types used in the machining of titanium alloys to identify whether coating type has a dramatic effect on the dominant tool wear mechanisms active during the process.The findings provide a clear illustration that the challenges facing the application of LAM are associated with the development of new types of cutting tools which are not subjected to the diffusion-controlled wear processes that dominate the performance of current cutting tools.展开更多
We report on the investigation of the origin of high oxide to nitride polishing selectivity of ceria-based slurry in the presence of picolinic acid. The oxide to nitride removal selectivity of the ceria slurry with pi...We report on the investigation of the origin of high oxide to nitride polishing selectivity of ceria-based slurry in the presence of picolinic acid. The oxide to nitride removal selectivity of the ceria slurry with picolinic acid is as high as 76.6 in the chemical mechanical polishing. By using zeta potential analyzer, particle size analyzer, horizon profilometer, thermogravimetric analysis and Fourier transform infrared spectroscopy, the pre- and the post-polished wafer surfaces as well as the pre- and the post-used ceria-based slurries are compared. Possible mechanism of high oxide to nitride selectivity with using ceria-based slurry with picolinic acid is discussed.展开更多
The Mg corrosion mechanism was explored using galvanostatic polarisation curves,hydrogen evolution and weight loss.The data(a)were consistent with the existence of the uni-positive Mg+ion,(b)indicated that some hydrog...The Mg corrosion mechanism was explored using galvanostatic polarisation curves,hydrogen evolution and weight loss.The data(a)were consistent with the existence of the uni-positive Mg+ion,(b)indicated that some hydrogen dissolved in the WE43 metal,and(c)indicated that self corrosion was more important than the applied current density in causing weight loss.展开更多
Selective laser melting(SLM)or Laser-based powder bed fusion(LBPF)is gaining much attention for the fabrication of novel materials with complex shapes,improved functionalities,and properties.An attempt has been made t...Selective laser melting(SLM)or Laser-based powder bed fusion(LBPF)is gaining much attention for the fabrication of novel materials with complex shapes,improved functionalities,and properties.An attempt has been made to fabricate hard and brittle silicon via SLM in the absence of any cracks.Two different powder batches were used,where one of the powder batches has 0.3wt%Fe and the other batch with 0.02wt%Fe.The parameter optimization process shows that the SLM Si samples were successfully fabricated from the powders with the minor addition of Fe.The deliberate addition of Fe facilitates heterogeneous nucleation of Si and aids in absorbing the laser energy beam more efficiently.SLM Si samples with 98.5%theoretical density were fabricated with a hardness of around 10.65±40 GPa.The experimental results show that SLM can successfully fabricate Si without cracks and with near theoretical density(of 99%)and complex shapes,which opens their use in wider industrial applications.展开更多
The formation of fine,non-dendritic equiaxed grains throughout a casting without the addition of refiners(i.e.independent of alloy chemistry),is made possible by using ultrasonic,magnetic or pulsed magnetic and electr...The formation of fine,non-dendritic equiaxed grains throughout a casting without the addition of refiners(i.e.independent of alloy chemistry),is made possible by using ultrasonic,magnetic or pulsed magnetic and electric current pulse techniques.The dominant mechanisms proposed for the grain refinement produced during the application of an external field are cavitation phenomena assisted nucleation or fragmentation of dendrites(ultrasonic field),wall crystals arising from the cold surface of the mould(electric current pulse,magnetic and pulsed magnetic fields).In all these cases fluid flow provides an additional contribution(e.g.reduced temperature gradients,growth rate and remelting of dendrites)to maintaining an equiaxed grain structure.The origin of equiaxed grains under an external field also depends on the casting conditions(volume and shape of casting)and the type of alloy other than the mechanisms specific to a particular technique.The current work aims to provide a detailed understanding of the various factors and mechanisms that influence the grain refinement achieved during the solidification of pure metals(magnesium and zinc)subjected to Ultra Sonic Treatment(UST).The role of the temperature range of UST application,time duration and an unpreheated sonotrode are examined with respect to the origin,evolution of equiaxed grain structure,morphology and the columnar to equiaxed transition.The origin of grains was analysed from three fundamental aspects that contribute to refinement(i)heterogeneous nucleation(ii)fragmentation of existing dendrites and(iii)grains produced from the colder surfaces(arising from mould walls or vibrating surfaces as wall crystals).A comparison of UST refinement with mechanical,low-frequency vibration,electric current pulse and magnetic field solidification of pure metals has also been provided to highlight the importance of the cold surfaces(sonotrode and mould wall)in influencing grain refinement.展开更多
Zinc(Zn) and its alloys have been proposed as biodegradable implant materials due to their unique combination of biodegradability, biocompatibility, and biofunctionality. However, the insufficient mechanical propertie...Zinc(Zn) and its alloys have been proposed as biodegradable implant materials due to their unique combination of biodegradability, biocompatibility, and biofunctionality. However, the insufficient mechanical properties of pure Zn greatly limit its clinical application. Here, we report on the microstructure, mechanical properties, friction and wear behavior, corrosion and degradation properties, hemocompatibility, and cytocompatibility of Zn–3 Cu and Zn–3 Cu–0.2 Ti alloys under three different conditions of as-cast(AC),hot-rolling(HR), and hot-rolling plus cold-rolling(HR + CR). The HR + CR Zn–3 Cu–0.2 Ti exhibited the best set of comprehensive properties among all the alloy samples, with yield strength of 211.0 MPa, ultimate strength of 271.1 MPa, and elongation of 72.1 %. Immersion tests of the Zn–3 Cu and Zn–3 Cu–0.2 Ti alloys in Hanks’ solution for 3 months indicated that the AC samples showed the lowest degradation rate,followed by the HR samples, and then the HR + CR samples, while the HR + CR Zn–3 Cu exhibited the highest degradation rate of 23.9 m/a. Friction and wear testing of the Zn–3 Cu and Zn–3 Cu–0.2 Ti alloys in Hanks’ solution indicated that the AC samples showed the highest wear resistance, followed by the HR samples, and then the HR + CR samples, while the AC Zn–3 Cu–0.2 Ti showed the highest wear resistance.The diluted extracts of HR + CR Zn–3 Cu and Zn–3 Cu–0.2 Ti at a concentration of ≤25 % exhibited noncytotoxicity. Furthermore, both the HR + CR Zn–3 Cu and Zn–3 Cu–0.2 Ti exhibited effective antibacterial properties against S. aureus.展开更多
To satisfy the property requirements for biodegradable medical implants,Zn alloyed with low levels of Mg(≤0.8 wt%)has attracted increased research interest.In the present study,deformation twinning was observed in te...To satisfy the property requirements for biodegradable medical implants,Zn alloyed with low levels of Mg(≤0.8 wt%)has attracted increased research interest.In the present study,deformation twinning was observed in tensile tests and twinning appears to have an adverse impact on ductility.The profuse twinning in the as-cast Zn-Mg alloys accelerated crack growth in tension due to twinning impingement which caused local stress concentrations and initiates cracking.As-rolled Zn-Mg alloys have better ductility than their as-cast counterparts due to the inhibition of twinning by the refined Mg2Zn11 intermetallic phase and the finer grain size.展开更多
Zn-1.0Cu-0.5Ca(TA15)alloy has shown promising characteristics of enhanced mechanical properties and biodegradability for absorbable cardiovascular stents,endovascular devices,and wound closure devices applications.In ...Zn-1.0Cu-0.5Ca(TA15)alloy has shown promising characteristics of enhanced mechanical properties and biodegradability for absorbable cardiovascular stents,endovascular devices,and wound closure devices applications.In this study,the TA15 alloy for bioabsorbable biomedical applications is investigated.In the conventionally cast TA15(TA15-C)alloy,CaZn_(13) phase are present as a large dendritic network with an average size of 73.25±112.84μm,Hot rolling of the TA15-C alloy has broken the long and dendritic network of the CaZn_(13) phases,however,the refined phases are observed as segregations and the distribution is non-uniform.These segregated CaZn_(13) suffered heavy localised corrosion which lead to poor mechanical properties in the as-fabricated condition and after biodegradation.Ultrasonic treatment(UST)during casting is identified as an effective technique for the refinement and redistribution of CaZn_(13) particles in TA15 alloy,which successfully reduce the size of the CaZn_(13) phase to 10.91±4.65μm in the as-solidified condition.After hot rolling,the UST processed TA15(TA15-UST)shows improved mechanical properties due to grain refinement and the reduction in microstructural defects,i.e.the broken CaZn_(13) phase.Results of 8-week immersion corrosion tests showed that both alloys possess very similar corrosion rate.However,TA15-UST has markedly improved corrosion homogeneity compared to TA15-N which favours the retention of mechanical properties even after prolonged exposure to physiological fluids.展开更多
Novel ternary Zn-Ca-Cu alloys were studied for the development of absorbable wound closure device material due to Ca and Cu’s therapeutic values to wound healing.The influence of Ca and Cu on the microstructure,mecha...Novel ternary Zn-Ca-Cu alloys were studied for the development of absorbable wound closure device material due to Ca and Cu’s therapeutic values to wound healing.The influence of Ca and Cu on the microstructure,mechanical and degradation properties of Zn were investigated in the as-cast state to establish the fundamental understanding on the Zn-Ca-Cu alloy system.The microstructure of Zn-0.5Ca-0.5Cu,Zn-1.0Ca-0.5Cu,and Zn0.5Ca-1.0Cu is composed of intermetallic phase CaZn13 distributed within the Zn-Cu solid solution.The presence of CaZn13 phase and Cu as solute within the Zn matrix,on the one hand,exhibited a synergistic effect on the grain refinement of Zn,reducing the grain size of pure Zn by 96%;on the other hand,improved the mechanical properties of the ternary alloys through solid solution strengthening,second phase strengthening,and grain refinement.The degradation properties of Zn-Ca-Cu alloys are primarily influenced by the micro-galvanic corrosion between Zn-Cu matrix and CaZn13 phase,where the 0.5%and 1.0%Ca addition increased the corrosion rate of Zn from 11.5μm/y to 19.8μm/y and 29.6μm/y during 4 weeks immersion test.展开更多
文摘Development of suitable materials that acts as an interface between the implant and tissues in body system structurally, mechanically and bio functionally is important for the success of tissue engineering. This motivated materials scientists and biologists to find out suitable bioactive materials for the aforementioned purpose. There has been growing interest in developing bioactive synthetic ceramics that could closely mimic natural apatite characteristics. Hydroxyapatite (HAp) has been widely used as a biocompatible ceramic but mainly for contact with bone tissue, due to its resemblance to mineral bone. This study presents the synthesis and characterization of HAp materials from different sources like bovine bone and fish scales and their application in tissue engineering. The phase purity and crystallinity of different calcined HAp powder was determined by XRD and FTIR analysis. The Thermo Gravimetric and Differential Thermal Analysis were carried out to show the thermal stability of the HAp powder. The morphology of the powder was observed under Scanning Electron Microscopy (SEM). Cytotoxicity evaluation of the developed powder was carried out in RAW macrophage like cell line media for an incubation period of 72 hours. These results proved the biocompatibility of HAp powders obtained from different biosources for tissue engineering applications.
基金The support of the National Natural Science Foundation of China (Nos.52250710159,51731008,51671163)。
文摘This review summarizes recent insights into the Mg corrosion mechanism, clarifies many critical controversial points regarding the Mg corrosion behaviour, and updates some efforts made to extend the industrial application of Mg alloys. Based on the new understandings gained so far, future research directions are also suggested in the review. This review has the following logic. The first section "1. Scope"is a consolidation of the new understandings or developments regarding the Mg corrosion mechanism and the new applications for Mg alloys. It also highlights some key points for the review. The second section "2. Widely accepted knowledge" briefly summarizes the general understanding of Mg corrosion gained so far, which acts as the foundation for the following sections. The third section "3. Recently deepened insights" mainly briefs on some new insights into Mg corrosion phenomena based on recent findings. Different interpretations on the corrosion behaviours are comprehensively discussed in the fourth section "4. Controversial points" and the conclusions are drawn in the subsection"4.5 Clarified points". Apart from the fundamental understandings, various efforts in the application of Mg alloys are presented in the fifth section "5. New applications". Following the research tendency as indicated in the review, prioritized research areas are suggested in "6.Future directions". The review is concluded with "7. Concluding remarks" at last.
基金support of the Australian Research Council through the ARC Research Hub for Advanced Manufacturing of Medical Devices(IH150100024).J.Venezuela is also supported by the Advance Queensland Industry Research Fellowship(AQIRF114-2019RD2).
文摘UHP Mg-Ge alloys was recently found to provide excellent corrosion resistance.This paper provides new insights on the mechanism of improved corrosion resistance of UHP Mg-Ge alloys in Hanks’solution.The studied UHP Mg-0.5Ge and UHP Mg-1Ge alloys showed superior corrosion resistance compared to UHP Mg and WE43,with the Mg-1Ge exhibiting the best corrosion performance.The exceptional corrosion resistance of the UHP alloy is attributed to(i)Mg_(2)Ge’s ability to suppress cathodic kinetics,(ii)Ge’s capability to accelerate the formation of a highly passive layer,and the(iii)low amounts of corrosion-accelerating impurities.
基金the funding support provided by Australian Research Council Research Hub for Advanced Manufacturing of Medical Devices IH150100024the ARC Discovery grant DP140100702 and ARC linkage project LP150100950。
文摘Ultrasonic treatment(UST)applied during the solidification of pure Mg,eutectic(Mg-Zn)and peritectic(Mg-Zr)alloys was investigated in order to explore the grain refinement mechanisms.Temperature dependent grain refinement is observed in pure Mg where decreasing the superheat temperature(at which UST is applied from above the melting temperature,TM)from 100℃to 40℃produces significant refinement with a uniform grain structure.The presence of solute reduces the temperature dependence of the UST refinement and excellent grain refinement is obtained regardless of the superheat temperature(100℃or 40℃)and even with the use of preheated sonotrode in the Mg-6 wt.%Zn alloy.A further improvement in grain refinement is achieved when the alloy contains potent particles that introduce additional nucleation of grains in Mg-0.5 and 1.0 wt.%Zr alloys(producing an average grain size of≤100μm).At 40℃superheat,UST of Mg-Zn alloys produces excellent refinement(average grain size<200μm)with non-dendritic grains,which is normally achieved only with the addition of grain refining master alloy in the as-cast condition.The enhanced refinement observed in the eutectic alloy is explained through the undercooling imposed by a relatively cold sonotrode combined with high frequency vibrations and acoustic streaming.The advantages of using a cold sonotrode,a low superheat and solute are demonstrated for achieving significant refinement during solidification of Mg alloys under UST without or with a lower addition of grain refining master alloys.
基金the financial support for this research by the Australian Research Council(ARC)through the discovery grant DP170102557
文摘We measured the anodic hydrogen evolution rates for various applied anodic current densities and estimated the corresponding cathodic hydrogen evolution rates.The estimated cathodic hydrogen evolution rates were less than the measured anodic hydrogen evolution rates,contradicting the enhanced catalytic activity mechanism of Mg corrosion.In addition,this model was contradicted by the measured apparent Mg valence of 1.2±0.1.In contrast,the uni-positive Mg^(+)mechanism of Mg corrosion was supported by(i)the apparent Mg valence of 1.2±0.1,and(ii)the fact that the measured anodic hydrogen evolution rate increased with increasing weight loss rate.
基金This work was supported by the Australian Research Council Discovery Project DP 170102557。
文摘A review of the literature confirmed that the intrinsic corrosion rate of high-purity Mg as measured by weight-loss is 0.3mm/y in a concentrated chloride solution.Atmospheric corrosion of Mg alloys has produced corrosion rates of Mg-Al alloys an order of magnitude lower than the intrinsic corrosion rate of Mg in a concentrated chloride solution of 0.3 mm/y.The only successful strategy to produce a Mg alloy with a corrosion rate in a concentrated chloride solution substantially less than the intrinsic corrosion rate as measured by weight loss of Mg of 0.3 mm/y has been to improve the protectiveness of the corrosion product film.
基金financially supported by the National Natural Science Foundation of China(Grant No.51320105003)the Australian Research Council Centre of Excellence for Design in Light Metals and,ARC Discovery Project DP140100702the Exo Met Project co-funded by the European Commission’s 7th Framework Programme(Contract FP7-NMP3-LA-2012-280421)
文摘Commercial pure Al can be refined by Pulsed Magneto-Oscillation(PMO) treatment applied via a plate induction coil above the top surface of the melt. The proportion of the equiaxed zone area increases with decreasing Height to Diameter(H/D) ratios from 3.5 to1.8 and further to 1.0. Meanwhile, it increases and then decreases with increasing peak current for the three kinds of ingots with H/D ratios of 3.5, 1.8 and 1.0, respectively. However, when the H/D ratio decreases to 0.44, the area proportion of equiaxed zone can reach the maximum value with a lower peak current. FEA software simulation indicates that smaller H/D ratio results in larger current density, electromagnetic force and convection on the top surface of the melt, favoring nucleation and subsequent grain formation. Through evaluating Joule heating effect by PMO, it was found that the proper amount of Joule heating benefits grain refinement. Excessive Joule heating can reduce the size of the equiaxed zone and change the growth morphology of the grains.
文摘The effects of Sr additions on the microstructure and corrosion performance of a Mg-Al-RE alloy in 3.5 wt.%Na Cl saturated with Mg(OH)_(2) have been investigated.Microstructure examination reveals that the Sr addition introduces additional intermetallic phases,refines intermetallic networks and dendritic grains,and improves the network continuity.More Al and rare earth elements can be identified in the intermetallics and grain boundaries or inter-dendrite regions under a transmission electron microscope and secondary electron microscope,respectively.On the Sr-containing intermetallic phases and the refined microstructure,the oxide films become more protective,resulting in more corrosion resistant boundary areas and thus dendrite grain grooves.Hence,the presence of large amounts of intermetallics and boundaries can enhance the corrosion performance of the Mg-Al-RE alloy containing Sr.
基金Projects(2014KTZB01-02-03,2014KTZB01-02-04)supported by Shaanxi Science and Technology Coordination and Innovation Program,ChinaProject(DP120101672)supported by Australian Research Council(ARC)Discovery Grant,ARC Centre of Excellence for Design in Light Metals,Australia
文摘A yttrium-containing high-temperature titanium alloy(Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45Si-0.1Y, mass fraction, %) has been additively manufactured using selective electron beam melting(SEBM). The resulting microstructure and textures were studied using scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and electron backscattered diffraction(EBSD) and compared with the conventionally manufactured form. A notable distinct difference of microstructures is that additive manufacturing by SEBM enables homogeneous precipitation of fine Y2O3 dispersoids in the size range of 50-250 nm throughout the as-fabricated alloy, despite the presence of just trace levels of oxygen(7×10-4, mass fraction) and yttrium(10-3, mass fraction) in the alloy. In contrast, the conventionally manufactured alloy shows inhomogeneously distributed coarse Y2O3 precipitates, including cracked or debonded Y2O3 particles.
基金funded by the Shenzhen Science and Technology Innovation Commission(JCYJ20180504165824643)Shenzhen Industrial and Information Technology Bureau(ZDYBH201900000009)+1 种基金the support of Humboldt Research Fellowship for Experienced Researchersthe support of the Australian Research Council Research Hub for Advanced Manufacturing of Medical Devices(IH150100024)
文摘Magnesium alloys such as Mg–Ca and Mg–Zn–Ca are good orthopaedic materials;however their tendency to corrode is high.Herein we utilize selective laser melting(SLM)to modify the surface of these Mg alloys to simultaneously improve the corrosion behaviour and microhardness.The corrosion rate decreased from 2.1±0.2 mm/y to 1.0±0.1 mm/y for the laser-processed Mg–0.6Ca,and from 1.6±0.1 mm/y to 0.7±0.2 mm/y for laser-processed Mg–0.5Zn–0.3Ca.The microhardness increased from 46±1 HV to 56±1 HV for Mg–0.6Ca,and from 47±3 HV to 55±3 HV for Mg–0.5Zn–0.3Ca.In addition,good biocompatibility remained in the laser processed Mg alloys.The improved properties are attributed to laser-induced grain refinement,confined impurity elements,residual stress,and modified surface chemistry.The results demonstrated the potential of SLM as a surface engineering approach for developing advanced biomedical Mg alloys.
基金The research was supported by the Australian Research Council Centre of Excellence Design of Light Alloys CE0561574 and DMTC.
文摘Stress corrosion cracking(SCC)in distilled water was studied for AZ31,processed by differential-speed-rolling to different strengths,using Linear Increasing Stress Tests(LISTs).The stress corrosion crack velocity was 5.0±2.5×10^(−9) m s^(−1),independent of applied stress rate and independent of material strength.SCC susceptibility was greater at lower applied stress rates manifest most importantly as a lower threshold stress for stress corrosion crack initiation.SCC susceptibility could be characterised by the ratio of threshold stress to yield stress,which was dependent on processing details and was as low as 0.3.
文摘Several detailed studies have comprehensively investigated the benefits and limitations of laser-assisted machining(LAM)of titanium alloys.These studies have highlighted the positive impact of the application of laser preheating on reducing cutting forces and improving productivity but have also identified the detrimental effect of LAM on tool life.This paper seeks to evaluate a series of the most common cutting tools with different coating types used in the machining of titanium alloys to identify whether coating type has a dramatic effect on the dominant tool wear mechanisms active during the process.The findings provide a clear illustration that the challenges facing the application of LAM are associated with the development of new types of cutting tools which are not subjected to the diffusion-controlled wear processes that dominate the performance of current cutting tools.
基金supported by the Center for Advanced Materials Processing (CAMP) at Clarkson Universitythe National Integrate Circuit Research Program of China (Grant No. 2009ZX02023-3)+3 种基金the National Basic Research Program of China (GrantNos. 2007CB935400,2010CB934300 and 2006CB302700)the National High Technology Development Program of China (GrantNo. 2008AA031402)the Science and Technology Council of Shanghai,China (Grant Nos. 08DZ2200700,08JC1421700 and09QH1402600)the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists
文摘We report on the investigation of the origin of high oxide to nitride polishing selectivity of ceria-based slurry in the presence of picolinic acid. The oxide to nitride removal selectivity of the ceria slurry with picolinic acid is as high as 76.6 in the chemical mechanical polishing. By using zeta potential analyzer, particle size analyzer, horizon profilometer, thermogravimetric analysis and Fourier transform infrared spectroscopy, the pre- and the post-polished wafer surfaces as well as the pre- and the post-used ceria-based slurries are compared. Possible mechanism of high oxide to nitride selectivity with using ceria-based slurry with picolinic acid is discussed.
文摘The Mg corrosion mechanism was explored using galvanostatic polarisation curves,hydrogen evolution and weight loss.The data(a)were consistent with the existence of the uni-positive Mg+ion,(b)indicated that some hydrogen dissolved in the WE43 metal,and(c)indicated that self corrosion was more important than the applied current density in causing weight loss.
基金by the Shenzhen Institute of Information Technology School-Enterprise Collaborative Innovation(No.SZIIT2021KJ057)the High-end Foreign Experts Recruitment Program(No.G2021163004L)+2 种基金the Natural Science Foundation of Guangdong Province(2020A1515011242)the Guangdong International Science and Technology Cooperation Program((No.2021A0505050002)the European Regional Development Grant(No.ASTRA6-6)。
文摘Selective laser melting(SLM)or Laser-based powder bed fusion(LBPF)is gaining much attention for the fabrication of novel materials with complex shapes,improved functionalities,and properties.An attempt has been made to fabricate hard and brittle silicon via SLM in the absence of any cracks.Two different powder batches were used,where one of the powder batches has 0.3wt%Fe and the other batch with 0.02wt%Fe.The parameter optimization process shows that the SLM Si samples were successfully fabricated from the powders with the minor addition of Fe.The deliberate addition of Fe facilitates heterogeneous nucleation of Si and aids in absorbing the laser energy beam more efficiently.SLM Si samples with 98.5%theoretical density were fabricated with a hardness of around 10.65±40 GPa.The experimental results show that SLM can successfully fabricate Si without cracks and with near theoretical density(of 99%)and complex shapes,which opens their use in wider industrial applications.
基金funding support provided by the Australian Research Council Research Hub for Advanced Manufacturing of Medical Devices IH150100024the ARC Discovery grant DP140100702ARC linkage project LP150100950。
文摘The formation of fine,non-dendritic equiaxed grains throughout a casting without the addition of refiners(i.e.independent of alloy chemistry),is made possible by using ultrasonic,magnetic or pulsed magnetic and electric current pulse techniques.The dominant mechanisms proposed for the grain refinement produced during the application of an external field are cavitation phenomena assisted nucleation or fragmentation of dendrites(ultrasonic field),wall crystals arising from the cold surface of the mould(electric current pulse,magnetic and pulsed magnetic fields).In all these cases fluid flow provides an additional contribution(e.g.reduced temperature gradients,growth rate and remelting of dendrites)to maintaining an equiaxed grain structure.The origin of equiaxed grains under an external field also depends on the casting conditions(volume and shape of casting)and the type of alloy other than the mechanisms specific to a particular technique.The current work aims to provide a detailed understanding of the various factors and mechanisms that influence the grain refinement achieved during the solidification of pure metals(magnesium and zinc)subjected to Ultra Sonic Treatment(UST).The role of the temperature range of UST application,time duration and an unpreheated sonotrode are examined with respect to the origin,evolution of equiaxed grain structure,morphology and the columnar to equiaxed transition.The origin of grains was analysed from three fundamental aspects that contribute to refinement(i)heterogeneous nucleation(ii)fragmentation of existing dendrites and(iii)grains produced from the colder surfaces(arising from mould walls or vibrating surfaces as wall crystals).A comparison of UST refinement with mechanical,low-frequency vibration,electric current pulse and magnetic field solidification of pure metals has also been provided to highlight the importance of the cold surfaces(sonotrode and mould wall)in influencing grain refinement.
基金supported financially by the Research Funds of the Wenzhou Science and Technology Bureau (Nos.ZG2019022 and 2018ZG008)support for this research by the Australian Research Council (ARC) through the Discovery Project (No.DP170102557)+1 种基金the Future Fellowship(No.FT160100252)support of the ARC Research Hub for Advanced Manufacturing of Medical Devices (No.IH150100024)。
文摘Zinc(Zn) and its alloys have been proposed as biodegradable implant materials due to their unique combination of biodegradability, biocompatibility, and biofunctionality. However, the insufficient mechanical properties of pure Zn greatly limit its clinical application. Here, we report on the microstructure, mechanical properties, friction and wear behavior, corrosion and degradation properties, hemocompatibility, and cytocompatibility of Zn–3 Cu and Zn–3 Cu–0.2 Ti alloys under three different conditions of as-cast(AC),hot-rolling(HR), and hot-rolling plus cold-rolling(HR + CR). The HR + CR Zn–3 Cu–0.2 Ti exhibited the best set of comprehensive properties among all the alloy samples, with yield strength of 211.0 MPa, ultimate strength of 271.1 MPa, and elongation of 72.1 %. Immersion tests of the Zn–3 Cu and Zn–3 Cu–0.2 Ti alloys in Hanks’ solution for 3 months indicated that the AC samples showed the lowest degradation rate,followed by the HR samples, and then the HR + CR samples, while the HR + CR Zn–3 Cu exhibited the highest degradation rate of 23.9 m/a. Friction and wear testing of the Zn–3 Cu and Zn–3 Cu–0.2 Ti alloys in Hanks’ solution indicated that the AC samples showed the highest wear resistance, followed by the HR samples, and then the HR + CR samples, while the AC Zn–3 Cu–0.2 Ti showed the highest wear resistance.The diluted extracts of HR + CR Zn–3 Cu and Zn–3 Cu–0.2 Ti at a concentration of ≤25 % exhibited noncytotoxicity. Furthermore, both the HR + CR Zn–3 Cu and Zn–3 Cu–0.2 Ti exhibited effective antibacterial properties against S. aureus.
文摘To satisfy the property requirements for biodegradable medical implants,Zn alloyed with low levels of Mg(≤0.8 wt%)has attracted increased research interest.In the present study,deformation twinning was observed in tensile tests and twinning appears to have an adverse impact on ductility.The profuse twinning in the as-cast Zn-Mg alloys accelerated crack growth in tension due to twinning impingement which caused local stress concentrations and initiates cracking.As-rolled Zn-Mg alloys have better ductility than their as-cast counterparts due to the inhibition of twinning by the refined Mg2Zn11 intermetallic phase and the finer grain size.
基金support of the Australian Research Council through the ARC Research Hub for Advanced Manufacturing of Medical Devices(IH150100024)。
文摘Zn-1.0Cu-0.5Ca(TA15)alloy has shown promising characteristics of enhanced mechanical properties and biodegradability for absorbable cardiovascular stents,endovascular devices,and wound closure devices applications.In this study,the TA15 alloy for bioabsorbable biomedical applications is investigated.In the conventionally cast TA15(TA15-C)alloy,CaZn_(13) phase are present as a large dendritic network with an average size of 73.25±112.84μm,Hot rolling of the TA15-C alloy has broken the long and dendritic network of the CaZn_(13) phases,however,the refined phases are observed as segregations and the distribution is non-uniform.These segregated CaZn_(13) suffered heavy localised corrosion which lead to poor mechanical properties in the as-fabricated condition and after biodegradation.Ultrasonic treatment(UST)during casting is identified as an effective technique for the refinement and redistribution of CaZn_(13) particles in TA15 alloy,which successfully reduce the size of the CaZn_(13) phase to 10.91±4.65μm in the as-solidified condition.After hot rolling,the UST processed TA15(TA15-UST)shows improved mechanical properties due to grain refinement and the reduction in microstructural defects,i.e.the broken CaZn_(13) phase.Results of 8-week immersion corrosion tests showed that both alloys possess very similar corrosion rate.However,TA15-UST has markedly improved corrosion homogeneity compared to TA15-N which favours the retention of mechanical properties even after prolonged exposure to physiological fluids.
基金the support of the Australian Research Council through the ARC Research Hub for Advanced Manufacturing of Medical Devices(IH150100024).
文摘Novel ternary Zn-Ca-Cu alloys were studied for the development of absorbable wound closure device material due to Ca and Cu’s therapeutic values to wound healing.The influence of Ca and Cu on the microstructure,mechanical and degradation properties of Zn were investigated in the as-cast state to establish the fundamental understanding on the Zn-Ca-Cu alloy system.The microstructure of Zn-0.5Ca-0.5Cu,Zn-1.0Ca-0.5Cu,and Zn0.5Ca-1.0Cu is composed of intermetallic phase CaZn13 distributed within the Zn-Cu solid solution.The presence of CaZn13 phase and Cu as solute within the Zn matrix,on the one hand,exhibited a synergistic effect on the grain refinement of Zn,reducing the grain size of pure Zn by 96%;on the other hand,improved the mechanical properties of the ternary alloys through solid solution strengthening,second phase strengthening,and grain refinement.The degradation properties of Zn-Ca-Cu alloys are primarily influenced by the micro-galvanic corrosion between Zn-Cu matrix and CaZn13 phase,where the 0.5%and 1.0%Ca addition increased the corrosion rate of Zn from 11.5μm/y to 19.8μm/y and 29.6μm/y during 4 weeks immersion test.