期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Low-temperature thermocatalytic particulate carbon decomposition via urea solution-combustion derived CeO2 nanostructures 被引量:1
1
作者 S.P.Ratnayake M.M.M.G.P.G.Mantilaka +6 位作者 C.Sandaruwan D.Dahanayake Y.Pivini Gunasekara S.Jeyasakthy N.M.Gurusinghe U.K.Wanninayake K.M.Nalin de Silva 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第1期67-74,I0003,共9页
A facile,one-pot,urea solution combustion route was utilized to synthesize highly catalytic CeO2 nanostructures.CeO2 prepared under varying thermal conditions was characterized by electron microscopy,energy dispersive... A facile,one-pot,urea solution combustion route was utilized to synthesize highly catalytic CeO2 nanostructures.CeO2 prepared under varying thermal conditions was characterized by electron microscopy,energy dispersive X-ray spectroscopy,X-ray diffraction,X-ray photoelectron spectroscopy,infrared and Raman techniques.As the synthesis temperature is raised from 400 to 1000℃,the crystallite size and dspacing of nanoparticles are observed to reduce while cell parameters remain in the same range.Particle size exhibits an accession from~20 to~50 nm along the process.Initial CeO2 nanoparticles are detected as a composite structure of CeO2 and graphitic carbon nitride(g-C3 N4)produced by the pyrolysis of urea.Concerning the solid carbon particulate oxidation capacity,an outstanding performance is exhibited by CeO2 synthesized at 800℃where the oxidation onset temperature is reduced by 27%compared with the others.The superior performance is attributed to the carbon nitride-generated unique CeO2 nanomorphology consolidating ample reactive sites and facilitated oxygen delivery for a highly efficient thermocatalytic process.Concerning atmospheric pollution mitigation,synthesis of these CeO2 nanostructures represents a cost effective and convenient abatement technique for carbon particulates in comparison to cost-intensive,environmentally detrimental and noble-metal based techniques. 展开更多
关键词 CERIA Nanoparticles SOOT Solution combustion Graphitic carbon nitride Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部