The discovery of a giant comet (C/2014 UN271) at a distance of 29 AU in October 2014 and the later discovery in September 2021 of a dramatic brightening episode offers an ideal opportunity for verifying the prediction...The discovery of a giant comet (C/2014 UN271) at a distance of 29 AU in October 2014 and the later discovery in September 2021 of a dramatic brightening episode offers an ideal opportunity for verifying the predictions of a “biological” comet. The eruptions of the comet at a heliocentric distance of 20 AU are plausibly explained as due to high pressure venting of the products of microbial metabolism in radioactively heated subsurface lakes. The standard non-biological model of comets is woefully inadequate to account for eruptions at such large distances from the sun where surface temperatures are as low as 60 K.展开更多
The observed microwave background radiation (MBR) is commonly in- terpreted as the relic of an early hot universe, and its observed features (spectrum and anisotropy) are explained in terms of properties of the ea...The observed microwave background radiation (MBR) is commonly in- terpreted as the relic of an early hot universe, and its observed features (spectrum and anisotropy) are explained in terms of properties of the early universe. Here we describe a complementary, even possibly alternative, interpretation of MBR, first proposed in the early 20th century, and adapt it to modern observations. For example, the stellar Hipparcos data show that the energy density of starlight from the Milky Way, if suit- ably thermalized, yields a temperature of ~2.81 K. This and other arguments given here strongly suggest that the origin of MBR may lie, at least in a very large part, in re-radiation of thermalized galactic starlight. The strengths and weaknesses of this alternative radical explanation are discussed.展开更多
文摘The discovery of a giant comet (C/2014 UN271) at a distance of 29 AU in October 2014 and the later discovery in September 2021 of a dramatic brightening episode offers an ideal opportunity for verifying the predictions of a “biological” comet. The eruptions of the comet at a heliocentric distance of 20 AU are plausibly explained as due to high pressure venting of the products of microbial metabolism in radioactively heated subsurface lakes. The standard non-biological model of comets is woefully inadequate to account for eruptions at such large distances from the sun where surface temperatures are as low as 60 K.
基金supported in part by the Perimeter Institute for Theoretical PhysicsResearch at the Perimeter Institute is supported by the Government of Canada through Industry Canadaby the Province of Ontario through the Ministry of Research and Innovation
文摘The observed microwave background radiation (MBR) is commonly in- terpreted as the relic of an early hot universe, and its observed features (spectrum and anisotropy) are explained in terms of properties of the early universe. Here we describe a complementary, even possibly alternative, interpretation of MBR, first proposed in the early 20th century, and adapt it to modern observations. For example, the stellar Hipparcos data show that the energy density of starlight from the Milky Way, if suit- ably thermalized, yields a temperature of ~2.81 K. This and other arguments given here strongly suggest that the origin of MBR may lie, at least in a very large part, in re-radiation of thermalized galactic starlight. The strengths and weaknesses of this alternative radical explanation are discussed.