Bacteria appeared early in the evolution of cellular life on planet Earth, and therefore the universally essential genes or biological pathways found across bacterial domains may represent fundamental genetic or cellu...Bacteria appeared early in the evolution of cellular life on planet Earth, and therefore the universally essential genes or biological pathways found across bacterial domains may represent fundamental genetic or cellular systems used in early life. The essential genes and the minimal gene set required to support bacterial life have recently been experimentally and computationally identified. It is, however,still hard to estimate the ancient genes present in primitive cells compared to the essential genes in contemporary bacteria, because we do not know how ancestral primitive cells lived and proliferated, and therefore cannot directly evaluate the essentiality of the genes in ancestral primitive cells. The cell wall is normally essential for bacterial proliferation and cellular division of walled bacterial cells is normally highly controlled by the essential FtsZ cell division machinery. But, bacteria are capable of reverting to their cell wall deficient ancestral form, called the "L-form". Unlike "normal" cells, L-forms divide by a simple physical mechanism based on the effects of membrane dynamics, suggesting a mode of primitive proliferation before the appearance of the cell wall. In this review, we summarize the experimental and computational investigations of minimal gene sets and discuss the minimal cellular modules required to support the proliferation of primitive cells, based on L-form proliferation.展开更多
Increased expression levels of the RNA splicing regulator Transformer2fl (abbreviated Tra2fl) have been reported in several types of cancer. Recent work has revealed an intimate cross-regulation between Tra2fl and t...Increased expression levels of the RNA splicing regulator Transformer2fl (abbreviated Tra2fl) have been reported in several types of cancer. Recent work has revealed an intimate cross-regulation between Tra2fl and the highly similar Tra2a protein in human breast cancer cells, though these two proteins are encoded by separate genes created by a gene duplication that occurred over 500 million years ago. This cross-regulation involves splicing control of a special class of exons, called poison exons. Down-regulation of Tra2fl reduces splicing inclu- sion of a poison exon in the mRNA encoding Tra2a, thereby up-regulating Tra2a protein expression. This buffers any splicing changes that might be caused by individual depletion of Tra2fl alone. Discovery of this cross-regulation pathway, and its by-pass by joint deple- tion of both human Tra2 proteins, revealed Tra2 proteins are essential for breast cancer cell viability, and led to the identification of important targets for splicing control. These exons include a critical exon within the checkpoint kinase 1 (CHK1) gene that plays a crucial function in the protection of cancer cells from replication stress. Breast cancer cells depleted for Tra2 proteins have reduced CHK1 protein levels and accumulate DNA damage. These data suggest Tra2 proteins and/or their splicing targets as possible cancer drug targets.展开更多
Putative and known polysaccharide deacetylases (PDAs) from B. anthracis have key roles in resistance to host lysozyme, stabilization of the cell wall, biogenesis of peptidoglycan (PG) and for neutral polysaccharide mo...Putative and known polysaccharide deacetylases (PDAs) from B. anthracis have key roles in resistance to host lysozyme, stabilization of the cell wall, biogenesis of peptidoglycan (PG) and for neutral polysaccharide modification and attachment to PG. Here we elucidated the physiological role of the putative PDA BA1836 from B. anthracis. The ba1836 gene was expressed upon entrance into the stationary phase of growth and enhanced during the early stages of sporulation. The Δba1836 knockout strain had normal growth rate, did not exhibit any significant alterations in PG pattern of stationary phase cells and was not sensitive to lysozyme, but showed a defect in cell separation. Strikingly, the Δba1836 mutant strain exhibited a severe delay in spore development although mature spores were ultimately developed and had normal morphology. Additionally, digestion of Δba1836 mutant spore PG with mutanolysin produced an almost identical muropeptide pattern compared to peptidoglycan from wild type spores, although the amount of all muropeptides was significantly reduced. Finally, knockout spores exhibited a lower germination rate. To our knowledge, BA1836 has a unique role, among the presently characterized PDAs from B. anthracis, in spore development and germination.展开更多
基金supported by Grant-in-Aid for Scientific Research on Innovative Areas(26106001)
文摘Bacteria appeared early in the evolution of cellular life on planet Earth, and therefore the universally essential genes or biological pathways found across bacterial domains may represent fundamental genetic or cellular systems used in early life. The essential genes and the minimal gene set required to support bacterial life have recently been experimentally and computationally identified. It is, however,still hard to estimate the ancient genes present in primitive cells compared to the essential genes in contemporary bacteria, because we do not know how ancestral primitive cells lived and proliferated, and therefore cannot directly evaluate the essentiality of the genes in ancestral primitive cells. The cell wall is normally essential for bacterial proliferation and cellular division of walled bacterial cells is normally highly controlled by the essential FtsZ cell division machinery. But, bacteria are capable of reverting to their cell wall deficient ancestral form, called the "L-form". Unlike "normal" cells, L-forms divide by a simple physical mechanism based on the effects of membrane dynamics, suggesting a mode of primitive proliferation before the appearance of the cell wall. In this review, we summarize the experimental and computational investigations of minimal gene sets and discuss the minimal cellular modules required to support the proliferation of primitive cells, based on L-form proliferation.
文摘Increased expression levels of the RNA splicing regulator Transformer2fl (abbreviated Tra2fl) have been reported in several types of cancer. Recent work has revealed an intimate cross-regulation between Tra2fl and the highly similar Tra2a protein in human breast cancer cells, though these two proteins are encoded by separate genes created by a gene duplication that occurred over 500 million years ago. This cross-regulation involves splicing control of a special class of exons, called poison exons. Down-regulation of Tra2fl reduces splicing inclu- sion of a poison exon in the mRNA encoding Tra2a, thereby up-regulating Tra2a protein expression. This buffers any splicing changes that might be caused by individual depletion of Tra2fl alone. Discovery of this cross-regulation pathway, and its by-pass by joint deple- tion of both human Tra2 proteins, revealed Tra2 proteins are essential for breast cancer cell viability, and led to the identification of important targets for splicing control. These exons include a critical exon within the checkpoint kinase 1 (CHK1) gene that plays a crucial function in the protection of cancer cells from replication stress. Breast cancer cells depleted for Tra2 proteins have reduced CHK1 protein levels and accumulate DNA damage. These data suggest Tra2 proteins and/or their splicing targets as possible cancer drug targets.
文摘Putative and known polysaccharide deacetylases (PDAs) from B. anthracis have key roles in resistance to host lysozyme, stabilization of the cell wall, biogenesis of peptidoglycan (PG) and for neutral polysaccharide modification and attachment to PG. Here we elucidated the physiological role of the putative PDA BA1836 from B. anthracis. The ba1836 gene was expressed upon entrance into the stationary phase of growth and enhanced during the early stages of sporulation. The Δba1836 knockout strain had normal growth rate, did not exhibit any significant alterations in PG pattern of stationary phase cells and was not sensitive to lysozyme, but showed a defect in cell separation. Strikingly, the Δba1836 mutant strain exhibited a severe delay in spore development although mature spores were ultimately developed and had normal morphology. Additionally, digestion of Δba1836 mutant spore PG with mutanolysin produced an almost identical muropeptide pattern compared to peptidoglycan from wild type spores, although the amount of all muropeptides was significantly reduced. Finally, knockout spores exhibited a lower germination rate. To our knowledge, BA1836 has a unique role, among the presently characterized PDAs from B. anthracis, in spore development and germination.