期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An artificial intelligence framework for explainable drift detection in energy forecasting
1
作者 Chamod Samarajeewa Daswin De Silva +4 位作者 Milos Manic Nishan Mills Harsha Moraliyage Damminda Alahakoon Andrew Jennings 《Energy and AI》 EI 2024年第3期368-379,共12页
Accurate energy consumption forecasting is crucial for reducing operational costs, achieving net-zero carbon emissions, and ensuring sustainable buildings and cities of the future. Despite the frequent use of Artifici... Accurate energy consumption forecasting is crucial for reducing operational costs, achieving net-zero carbon emissions, and ensuring sustainable buildings and cities of the future. Despite the frequent use of Artificial Intelligence (AI) algorithms for learning energy consumption patterns and predictions in Building Science, relying solely on these techniques for energy demand prediction addresses only a fraction of the challenge. A drift in energy usage can lead to inaccuracies in these AI models and subsequently to poor decision-making and interventions. While drift detection techniques have been reported, a reliable and robust approach capable of explaining identified discrepancies with actionable insights has not been discussed in extant literature. Hence, this paper presents an Artificial Intelligence framework for energy consumption forecasting with explainable drift detection, aimed at addressing these challenges. The proposed framework is composed of energy embeddings, an optimized dimensional model integrated within a data warehouse, and scalable cloud implementation for effective drift detection with explainability capability. The framework is empirically evaluated in the real-world setting of a multi-campus, mixed-use tertiary education setting in Victoria, Australia. The results of these experiments highlight its capabilities in detecting concept drift, adapting forecast predictions, and providing an interpretation of the changes using energy embeddings. 展开更多
关键词 Building energy consumption forecasting Explainable drift detection Energy embedding Dimensional modeling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部