The major drawback associated with PEEK implants is their biologically inert surface,which caused unsatisfactory cellular response and poor adhesion between the implants and surrounding soft tissues against proper bon...The major drawback associated with PEEK implants is their biologically inert surface,which caused unsatisfactory cellular response and poor adhesion between the implants and surrounding soft tissues against proper bone growth.In this study,polyetheretherketone(PEEK)was incorporated with calcium hydroxyapatite(cHAp)to fabricate a PEEK-cHAp biocomposite,using the fused deposition modeling(FDM)method and a surface treatment strategy to create microporous architectures onto the filaments of PEEK lattice scaffold.Also,nanostructure and morphological tests of the PEEK-cHAp biocomposite were modeled and analyzed on the FDM-printed PEEK-cHAp biocomposite sample to evaluate its mechanical and thermal strengths as well as in vitro cytotoxicity via a scanning electron microscope(SEM).A technique was used innovatively to create and investigate the porous nanostructure of the PEEK with controlled pore size and distribution to promote cell penetration and biological integration of the PEEK-cHAp into the tissue.In vivo tests demonstrated that the surface-treated micropores facilitated the adhesion of newly regenerated soft tissues to form tight implant-tissue interfacial bonding between the cHAp and PEEK.The results of the cell culture depicted that PEEK-cHAp exhibited better cell proliferation attachment spreading and higher alkaline phosphatase activity than PEEK alone.Apatite islands formed on the PEEK-cHAp composite after immersion in simulated body fluid of Dulbecco’s modified Eagle medium(DMEM)for 14 days and grew continuously with more or extended periods.The microstructure treatment of the crystallinity of PEEK was comparatively and significantly different from the PEEK-cHAp sample,indicating a better treatment of PEEK-cHAp.The in vitro results obtained from the PEEK-cHAp biocomposite material showed its biodegradability and performance suitability for bone implants.This study has potential applications in the field of biomedical engineering to strengthen the conceptual knowledge of FDM and medical implants fabricated from PEEK-cHAp biocomposite materials.展开更多
Potassium-ion batteries(PIBs)are potential“Beyond Li-ion Batteries”candidates for their resource advantage and low standard electrode potential.To date,the research on PIBs is in its early stages,the most urgent tas...Potassium-ion batteries(PIBs)are potential“Beyond Li-ion Batteries”candidates for their resource advantage and low standard electrode potential.To date,the research on PIBs is in its early stages,the most urgent task is to develop high-performance electrode materials and reveal their potassium storage mechanism.For PIBs anode materials,carbon with tunable microstructure,excellent electrochemical activity,nontoxicity and low price is considered as one of the most promising anode materials for commercialization.Although some breakthrough works have emerged,the overall electrochemical performance of the reported carbon anode is still far away from practical application.Herein,we carry out a comprehensive overview of PIBs carbon anode in terms of three aspects of rational design of structure,performance evaluation criteria and characterization of potassium storage mechanism.First,the regulation mechanism of key structural features of carbon anode on its potassium storage performance and the representative structural regulation strategies are introduced.Then,in view of the undefined performance evaluation criteria of PIBs carbon anode,a reference principle for evaluating the potassium storage performance of carbon anode is proposed.Finally,the advanced characterization techniques for the potassium storage mechanism of carbon anode are summarize.This review aims to provide guidance for the development of practical PIBs anode.展开更多
We theoretically demonstrate a rich and significant new families of exact spatially localized and periodic wave solutions for a modified Korteweg–de Vries equation.The model applies for the description of different n...We theoretically demonstrate a rich and significant new families of exact spatially localized and periodic wave solutions for a modified Korteweg–de Vries equation.The model applies for the description of different nonlinear structures which include breathers,interacting solitons and interacting periodic wave solutions.A joint parameter which can take both positive and negative values of unity appeared in the functional forms of those closed form solutions,thus implying that every solution is determined for each value of this parameter.The results indicate that the existence of newly derived structures depend on whether the type of nonlinearity of the medium should be considered self-focusing or defocusing.The obtained nonlinear waveforms show interesting properties that may find practical applications.展开更多
A novel tetrapolymer(TP) consisting of carboxylate, sulphonate, phosphonate and sulfur dioxide based comonomers was synthesized using Butler cyclopoymerization technique. The synthesized tetrapolymer was characterized...A novel tetrapolymer(TP) consisting of carboxylate, sulphonate, phosphonate and sulfur dioxide based comonomers was synthesized using Butler cyclopoymerization technique. The synthesized tetrapolymer was characterized using FTIR,1H-NMR,13CNMR and elemental analysis. The performance of the tetrapolymer as a corrosion inhibitor for St37 carbon steel in 15% HCl and 15% H2SO4 acid media was assessed using electrochemical impedance spectroscopy(EIS), linear polarization resistance(LPR), potentiodynamic polarization(PDP) and electrochemical frequency modulation(EFM) techniques. The influence of addition of a small amount of KI on the corrosion inhibition efficiency of TP was also assessed. Results obtained showed that the tetrapolymer moderately inhibited the corrosion of St37 steel in the acid media with protection efficiency of 79.5% and 61.1% at the optimum concentration of 1000 mg·L^-1 studied in HCl and H2SO4 media respectively. On addition of 5 mmol·L^-1 KI to the optimum tetrapolymer concentration, the protection efficiency was upgraded to 90.6% and 93.5% in HCl and H2SO4 environment, respectively. The enhanced performance of the polymer in the presence of KI is due to synergistic action deduced from synergism parameter(S1) which was found to be greater than unity.The tetrapolymer afforded the corrosion inhibition of St37 steel in the acid media by virtue of adsorption of the polymer molecules on the steel surface which was confirmed by ATR-FTIR analysis of the adsorbed film extracted from the steel surface. TP + KI formed complex with St37 steel surface in H2SO4 solution but not in HCl solution.展开更多
A study of Eruca vesicaria, Bromelia hemisphaerica and Erythrina americana as eco-friendly corrosion inhibitors for 1018 carbon steel in 0.5 M H<sub>2</sub>SO<sub>4</sub> has been carried out b...A study of Eruca vesicaria, Bromelia hemisphaerica and Erythrina americana as eco-friendly corrosion inhibitors for 1018 carbon steel in 0.5 M H<sub>2</sub>SO<sub>4</sub> has been carried out by using weight loss tests, potentiodynamic polarization curves and electrochemical impedance spectroscopy measuremnts. Results have shown that the three extracts performed as good corrosion inhibitors, but the Eruca vesicaria exhibited the best performance followed by Erythrina americana. The three inhibitors formed a protective, passive film which protected the steel from corrosion. This was because they contain antioxidants present in their molecular structure with heteroatoms such as N, C and O like phenols, amino acids, etc., which react with metal and environment to form the protective film.展开更多
The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging des...The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging designs assembled by multiple energy harvesting,conversion and storage materials increase the energy transfer loss;the environmental energy supply is generally limited by climate and meteorological conditions,hindering the potential application of these selfpowered devices to be available at all times.Based on aerobic autoxidation of catechol,which is similar to the electrochemical oxidation of the catechol groups on the carbon materials under an electrical charge,we proposed an air-breathing chemical self-charge concept based on the aerobic autoxidation of catechol groups on oxygen-enriched carbon materials to ortho-quinone groups.Energy harvesting,conversion and storage functions could be integrated on a single carbon material to avoid the energy transfer loss among the different materials.Moreover,the assembled Cu/oxygen-enriched carbon battery confirmed the feasibility of the air-oxidation self-charging/electrical discharging mechanism for potential applications.This air-breathing chemical self-charge concept could facilitate the exploration of high-efficiency sustainable air self-charging devices.展开更多
An innovative microcrystalline cellulose(MCC)natural fibre powder-reinforced PLA biocomposite was investigated using the hand lay-up technique.The polymer matrix composite(PMC)samples were prepared by varying the weig...An innovative microcrystalline cellulose(MCC)natural fibre powder-reinforced PLA biocomposite was investigated using the hand lay-up technique.The polymer matrix composite(PMC)samples were prepared by varying the weight percentages(wt.%)of both PLA matrix and MCC reinforcement:pure PLA/100:0,90:10,80:20,70:30,60:40 and 50:50 wt.%,respectively.From the results obtained,MCC powder,with its impressive aspect ratio,proved to be an ideal reinforcement for the PLA,exhibiting exceptional mechanical properties.It was evident that the 80:20 wt.%biocomposite sample exhibited the maximum improvement in the tensile,flexural,notched impact,compressive strength and hardness by 28.85%,20.00%,91.66%,21.53%and 35.82%,respectively compared to the pure PLA sample.Similarly,during the thermogravimetric analysis(TGA),the same 80:20 wt.%biocomposite sample showed a minimum weight loss of 20%at 400℃,among others.The morphological study using Field Emission Scanning Electron Microscopy(FE-SEM)revealed that the uniform distribution of cellulose reinforcement in the PLA matrix actively improved the mechanical properties of the biocomposites,especially the optimal 80:20 wt.%sample.Importantly,it was evident that the optimal PLA/cellulose biocomposite sample could be a suitable and alternative sustainable,environmentally friendly and biodegradable material for semi/structural applications,replacing synthetic and traditional components.展开更多
Hazards in reservoirs and lakes arising from subaerial landslides causing impact waves(or ‘lake tsunamis’) are now well known, with several recent examples having been investigated in detail. The potential scale of ...Hazards in reservoirs and lakes arising from subaerial landslides causing impact waves(or ‘lake tsunamis’) are now well known, with several recent examples having been investigated in detail. The potential scale of such hazards was not widely known at the time of the Vaiont dam project in the 1950s and early 1960s, although a small wave triggered by a landslide at another new reservoir nearby in the Dolomites(northern Italy) drew the possible hazard to the attention of the Vaiont project’s managers. The Vaiont disaster in 1963 arose from a combination of disparate and seemingly unrelated factors and circumstances that led to an occurrence that could not have been imagined at that time. The ultimate cause was a very large landslide moving very rapidly into a reservoir and displacing the water. The resulting wave overtopped the dam to a height of around 175 m and around 2000 people were killed. This paper identifies and examines all of the issues surrounding the Vaiont dam and landslide in order to identify causal factors, contributory factors(including aggravating factors) and underlying factors. In doing so, it demonstrates that the disaster arose from the Vaiont dam project and cannot be attributed simply to the landslide. Underlying geological factors gave rise to the high speed of the landslide, which would have occurred anyway at some time. However, without the contributory factors that account for the presence of the reservoir, i.e. the choice of location for the project and management of the project with respect to a possible landslide hazard, there would have been no disaster. Indeed, the disaster could have been avoided if the reservoir could have been emptied pending further ground investigations. Understanding of this case provides many lessons for future dam projects in mountainous locations but also highlights an ongoing and perhaps under-appreciated risk from similar events involving other water bodies including geologically recent lakes formed behind natural landslide dams.展开更多
Apomixis is a reproductive model that bypasses sexual reproduction,so it does not require the combination of paternal and maternal gametes but instead results in the production of offspring directly from maternal tiss...Apomixis is a reproductive model that bypasses sexual reproduction,so it does not require the combination of paternal and maternal gametes but instead results in the production of offspring directly from maternal tissues.This reproductive mode results in the same genetic material in the mother and the offspring and has signi fi cant applications in agricultural breeding.Molecular and cytological methods were used to identify the reproductive type of Zanthoxylum bungeanum(ZB).Fluorescence detection of the ampli fi ed products of 12 pairs of polymorphic SSR primers showed consistent fl uorescence signals for mother and offspring,indicating that no trait separation occurred during reproduction.In addition,the cytological observation results showed differentiation of ZB embryos(2n)from nucellar cells(2n)to form inde fi nite embryonic primordia and then form adventitious embryos(2n),indicating that the apomictic type of ZB is sporophytic apomixis.The MADS-box transcription factor ZbAGLll was highly expressed during the critical period of nucellar embryo development in ZB.Unpollinated ZbAGLll-OE Arabidopsis produced fertile offspring and exhibited an apomictic phenotype.The overexpression of ZbAGL11 increased the callus induction rate of ZB tissue.In addition,the results of the yeast two-hybrid experiment showed that ZbAGL11 could interact with the ZbCYP450 and ZbCAD11 proteins.Our results demonstrate that ZbAGL11 can cause developmental disorders of Arabidopsis fl ower organs and result in apomixis-like phenotypes.展开更多
Chinese pepper,mainly including Zanthoxylum bungeanum and Zanthoxylum armatum,is an economically important crop popular in Asian countries due to its unique taste characteristics and potential medical uses.Numerous cu...Chinese pepper,mainly including Zanthoxylum bungeanum and Zanthoxylum armatum,is an economically important crop popular in Asian countries due to its unique taste characteristics and potential medical uses.Numerous cultivars of Chinese pepper have been developed in China through long-term domestication.To better understand the population structure,demographic history,and speciation of Chinese pepper,we performed a comprehensive analysis at a genome-wide level by analyzing 38,395 genomic SNPs that were identified in 112 cultivated and wild accessions using a high-throughput genomewide genotyping-by-sequencing(GBS)approach.Our analysis provides genetic evidence of multiple splitting events occurring between and within species,resulting in at least four clades in Z.bungeanum and two clades in Z.armatum.Despite no evidence of recent admixture between species,we detected substantial gene flow within species.Estimates of demographic dynamics and species distribution modeling suggest that climatic oscillations during the Pleistocene(including the Penultimate Glaciation and the Last Glacial Maximum)and recent domestication events together shaped the demography and evolution of Chinese pepper.Our analyses also suggest that southeastern Gansu province is the most likely origin of Z.bungeanum in China.These findings provide comprehensive insights into genetic diversity,population structure,demography,and adaptation in Zanthoxylum.展开更多
An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral config...An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.展开更多
We investigate the elastic field near the tip of an anticrack in a homogeneous decagonal quasicrystalline material subject to plane strain deformations. The phonon and phason stresses exhibit a square root singularity...We investigate the elastic field near the tip of an anticrack in a homogeneous decagonal quasicrystalline material subject to plane strain deformations. The phonon and phason stresses exhibit a square root singularity at the anticrack tip. Two realvalued phonon stress intensity factors and two real-valued phason stress intensity factors are introduced to scale four separate modes of deformation. We obtain four analytic functions which completely characterize the induced phonon and phason stresses as well as the displacement field. In particular, we derive a concise yet elegant representation of the anticrack contraction force.展开更多
Plant MYB transcription factors(TFs) play crucial roles in regulating the biosynthesis of flavonoids but current analysis on their role in Zanthoxylum bungeanum Maxim.(ZBM) is far from comprehensive. In this study, we...Plant MYB transcription factors(TFs) play crucial roles in regulating the biosynthesis of flavonoids but current analysis on their role in Zanthoxylum bungeanum Maxim.(ZBM) is far from comprehensive. In this study, we identified 270 MYB genes in ZBM and divided them into four subfamilies. The R2 R3-MYB(ZbMYB) category contained 251 genes and was classified into 33 subfamilies according to their phylogenetic results and sequence similarity. These subfamilies included 24 subgroups containing both MYBs of ZBM plants and AtMYBs, and nine subgroups containing only ZBM MYBs or AtMYBs. ZbMYBs with similar functions clustered into the same subgroup, indicating functional conservation. The subcellular localization analysis predicted that most ZbMYB genes were found in the nucleus. The transposed duplications appeared to play a major role in the expansion of the MYB gene family in ZBM. Through phylogenetic analysis and transcriptome profiling, it was found that 28 ZbMYB genes may regulate the biosynthesis of flavonoids in ZBM, and these genes expression presented distinct temporal and spatial expression patterns. In different fruit development stages of ZBM, the expression patterns of EVM0042160 and EVM0033809 genes obtained by qRT-PCR analysis are very similar to the flavonoid and anthocyanin content curves in ZBM. Further correlation analysis showed that the content of flavonoids in different fruit development stages and the transcript abundance levels of 28 ZbMYB genes have different degrees of correlation relationship. These results indicated that the ZbMYB genes might be involved in the flavonoid metabolic pathway. This comprehensive and systematic analysis of MYB family genes provided a solid foundation for further functional analysis of MYB TFs in ZBM.展开更多
Cost-effective 3d transition metal(TM) based single atom catalysts(SACs) for oxygen reduction reaction(ORR) are potential alternatives for Pt-based electrocatalysts in fuel cells and metal-air batteries.Understanding ...Cost-effective 3d transition metal(TM) based single atom catalysts(SACs) for oxygen reduction reaction(ORR) are potential alternatives for Pt-based electrocatalysts in fuel cells and metal-air batteries.Understanding the effects of SACs’ properties and active site composition on the catalytic performance is significant to construct highly efficient catalysts. Here, we successfully promote the activity of cobalt single atoms decorated on N-doped carbon nanosheets via tuning the content of different nitrogen components, which outperforms most reported cobalt SACs. The activity and kinetics show positive correlation trends with the content of Co-Nxand graphitic N, serving as the main active sites.Furthermore, ORR kinetics in alkaline media can be positively affected by the conductivity of catalysts while no similar relation is observed in acidic media. The slight loss of Co-Nxsites engenders a mild change of performance in alkaline media, while the decrease of Co-Nxsite activity due to chemical oxidation of carbon support and the loss of Co-Nxsites in acidic media exacerbate the degradation of performance. Our work provides an insight into the relation between ORR electron transfer kinetics and active sites in 3d TM based SACs.展开更多
Zanthoxylum bungeanum is an important spice and medicinal plant that is unique for its accumulation of abundant secondary metabolites,which create a characteristic aroma and tingling sensation in the mouth.Owing to th...Zanthoxylum bungeanum is an important spice and medicinal plant that is unique for its accumulation of abundant secondary metabolites,which create a characteristic aroma and tingling sensation in the mouth.Owing to the high proportion of repetitive sequences,high heterozygosity,and increased chromosome number of Z.bungeanum,the assembly of its chromosomal pseudomolecules is extremely challenging.Here,we present a genome sequence for Z.bungeanum,with a dramatically expanded size of 4.23 Gb,assembled into 68 chromosomes.This genome is approximately tenfold larger than that of its close relative Citrus sinensis.After the divergence of Zanthoxylum and Citrus,the lineage-specific whole-genome duplication event q-WGD approximately 26.8 million years ago(MYA)and the recent transposable element(TE)burst~6.41 MYA account for the substantial genome expansion in Z.bungeanum.The independent Zanthoxylum-specific WGD event was followed by numerous fusion/fission events that shaped the genomic architecture.Integrative genomic and transcriptomic analyses suggested that prominent speciesspecific gene family expansions and changes in gene expression have shaped the biosynthesis of sanshools,terpenoids,and anthocyanins,which contribute to the special flavor and appearance of Z.bungeanum.In summary,the reference genome provides a valuable model for studying the impact of WGDs with recent TE activity on gene gain and loss and genome reconstruction and provides resources to accelerate Zanthoxylum improvement.展开更多
Magnesium-based biomaterials have been in extensive research for orthopedic applications for decades due to their optimal mechanical features and osteopromotive nature;nevertheless,rapid degradation restricts their cl...Magnesium-based biomaterials have been in extensive research for orthopedic applications for decades due to their optimal mechanical features and osteopromotive nature;nevertheless,rapid degradation restricts their clinical applicability.In this study,pristine magnesium was purified(P-Mg)using a melt self-purification approach and reinforced using indigenously synthesized nanohydroxyapatite(HAP,0.6 wt.%)and strontium substituted nanohydroxyapatite(SrHAP,0.6 wt.%)using a low-cost stir assisted squeeze casting method to control their degradation rate.Using electron back-scattered diffraction(EBSD)and X-ray diffraction(XRD)examinations,all casted materials were carefully evaluated for microstructure and phase analysis.Mechanical characteristics,in vitro degradation,and in vitro biocompatibility with murine pre-osteoblasts were also tested on the fabricated alloys.For in vivo examination of bone formation,osteointegration,and degradation rate,the magnesium-based alloys were fabricated as small cylindrical pins with a diameter of 2.7 mm and a height of 2 mm.The pins were implanted in a critical-sized defect in a rat femur shaft(2.7 mm diameter and 2 mm depth)for 8 weeks and evaluated by microCT and histological evaluation for bone growth and osteointegration.When compared to P-Mg and P-MgHAP,micro-CT and histological analyses revealed that the P-MgSrHAP group had the highest bone formation towards the periphery of the implant and hence maximum osteointegration.When the removed pins from the bone defect were analyzed using GIXRD,they displayed hydroxyapatite peaks that were consistent with bio-integration.For P-Mg,P-MgHAP,and P-MgSrHAP 8 weeks after implantation,in vivo degradation rates derived from micro-CT were around 0.6 mm/year,0.5 mm/year,and 0.1 mm/year,respectively.Finally,P-MgSrHAP possesses the requisite degradation rate as well as sufficient mechanical and biological properties,indicating that it has the potential to be used in the development/fabrication of biodegradable bioactive orthopaedic implants.展开更多
A mathematical approach was proposed to investigate the impact of high penetration of large-scale photovoltaic park(LPP) on small-signal stability of a power network and design of hybrid controller for these units.A s...A mathematical approach was proposed to investigate the impact of high penetration of large-scale photovoltaic park(LPP) on small-signal stability of a power network and design of hybrid controller for these units.A systematic procedure was performed to obtain the complete model of a multi-machine power network including LPP.For damping of oscillations focusing on inter-area oscillatory modes,a hybrid controller for LPP was proposed.The performance of the suggested controller was tested using a 16-machine 5-area network.The results indicate that the proposed hybrid controller for LPP provides sufficient damping to the low-frequency modes of power system for a wide range of operating conditions.The method presented in this work effectively indentifies the impact of increased PV penetration and its controller on dynamic performance of multi-machine power network containing LPP.Simulation results demonstrate that the model presented can be used in designing of essential controllers for LPP.展开更多
The main objective of this work is to predict the mixing of two different miscible oils in a very long channel. The background to this problem relates to the mixing of heavy and light oil in a pipeline. As a first ste...The main objective of this work is to predict the mixing of two different miscible oils in a very long channel. The background to this problem relates to the mixing of heavy and light oil in a pipeline. As a first step, a 2D channel with an aspect ratio of 250 is considered. The batch-mixing of two miscible crude oils with different viscosities and densities is modeled using an unsteady laminar model and unsteady RANS model available in the commercial CFD solver ANSYSFluent. For a comparison, a LES model was used for a 3D version of the 2D channel. The distinguishing feature of this work is the Lagrangian coordinate system utilized to set no-slip wall boundary conditions. The global CFD model has been validated against classical analytical solutions. Excellent agreement has been achieved. Simulations were carried out for a Reynolds number of 6300(calculated using light oil properties) and a Schmidt number of 10~4. The results show that, in contrast to the unsteady RANS model, the LES and unsteady laminar models produce comparable mixing dynamics for two oils in the channel. Analysis of simulations also shows that, for a channel length of 100 m and a height of 0.4 m, the complete mixing of two oils across the channel has not been achieved. We showed that the mixing zone consists of the three different mixing sub-zones, which have been identified using the averaged mass fraction of the heavy oil along the flow direction. The first sub-zone corresponds to the main front propagation area with a length of several heights of the channel. The second and third sub-zones are characterized by so-called shear-flow-driven mixing due to the Kelvin–Helmholtz vortices occurring between oils in the axial direction. It was observed that the third sub-zone has a steeper mass fraction gradient of the heavy oil in the axial direction in comparison with the second sub-zone, which corresponds to the flow-averaged mass fraction of 0.5 for the heavy oil.展开更多
With the rapid development of marine renewable energy technologies, the demand to mitigate the fluctuation of variable generators with energy storage technologies continues to increase. Offshore compressed air energy ...With the rapid development of marine renewable energy technologies, the demand to mitigate the fluctuation of variable generators with energy storage technologies continues to increase. Offshore compressed air energy storage (OCAES) is a novel flexible-scale energy storage technology that is suitable for marine renewable energy storage in coastal cities, islands, offshore platforms, and offshore renewable energy farms. For deep-water applications, a marine riser is necessary for connecting floating platforms and subsea systems. Thus, the response characteristics of marine risers are of great importance for the stability and safety of the entire OCAES system. In this study, numerical models of two kinds of flexible risers, namely, catenary riser and lazy wave riser, are established in OrcaFlex software. The static and dynamic characteristics of the catenary and the lazy wave risers are analyzed under different environment conditions and internal pressure levels. A sensitivity analysis of the main parameters affecting the lazy wave riser is also conducted. Results show that the structure of the lazy wave riser is more complex than the catenary riser;nevertheless, the former presents better response performance.展开更多
基金We appreciate the funding/financial support received from the Higher Education Innovation Fund(HEIF)of De Montfort University,Leicester,UK,under Research Project No.0043.06.
文摘The major drawback associated with PEEK implants is their biologically inert surface,which caused unsatisfactory cellular response and poor adhesion between the implants and surrounding soft tissues against proper bone growth.In this study,polyetheretherketone(PEEK)was incorporated with calcium hydroxyapatite(cHAp)to fabricate a PEEK-cHAp biocomposite,using the fused deposition modeling(FDM)method and a surface treatment strategy to create microporous architectures onto the filaments of PEEK lattice scaffold.Also,nanostructure and morphological tests of the PEEK-cHAp biocomposite were modeled and analyzed on the FDM-printed PEEK-cHAp biocomposite sample to evaluate its mechanical and thermal strengths as well as in vitro cytotoxicity via a scanning electron microscope(SEM).A technique was used innovatively to create and investigate the porous nanostructure of the PEEK with controlled pore size and distribution to promote cell penetration and biological integration of the PEEK-cHAp into the tissue.In vivo tests demonstrated that the surface-treated micropores facilitated the adhesion of newly regenerated soft tissues to form tight implant-tissue interfacial bonding between the cHAp and PEEK.The results of the cell culture depicted that PEEK-cHAp exhibited better cell proliferation attachment spreading and higher alkaline phosphatase activity than PEEK alone.Apatite islands formed on the PEEK-cHAp composite after immersion in simulated body fluid of Dulbecco’s modified Eagle medium(DMEM)for 14 days and grew continuously with more or extended periods.The microstructure treatment of the crystallinity of PEEK was comparatively and significantly different from the PEEK-cHAp sample,indicating a better treatment of PEEK-cHAp.The in vitro results obtained from the PEEK-cHAp biocomposite material showed its biodegradability and performance suitability for bone implants.This study has potential applications in the field of biomedical engineering to strengthen the conceptual knowledge of FDM and medical implants fabricated from PEEK-cHAp biocomposite materials.
基金supported financially by the National Key Research and Development Program of China (Grants No. 2017YFA0206301)the National Natural Science Foundation of China (Grants No. 51631001 and 51631001)the China-Germany Collaboration Project (Grants No. M-0199)
文摘Potassium-ion batteries(PIBs)are potential“Beyond Li-ion Batteries”candidates for their resource advantage and low standard electrode potential.To date,the research on PIBs is in its early stages,the most urgent task is to develop high-performance electrode materials and reveal their potassium storage mechanism.For PIBs anode materials,carbon with tunable microstructure,excellent electrochemical activity,nontoxicity and low price is considered as one of the most promising anode materials for commercialization.Although some breakthrough works have emerged,the overall electrochemical performance of the reported carbon anode is still far away from practical application.Herein,we carry out a comprehensive overview of PIBs carbon anode in terms of three aspects of rational design of structure,performance evaluation criteria and characterization of potassium storage mechanism.First,the regulation mechanism of key structural features of carbon anode on its potassium storage performance and the representative structural regulation strategies are introduced.Then,in view of the undefined performance evaluation criteria of PIBs carbon anode,a reference principle for evaluating the potassium storage performance of carbon anode is proposed.Finally,the advanced characterization techniques for the potassium storage mechanism of carbon anode are summarize.This review aims to provide guidance for the development of practical PIBs anode.
文摘We theoretically demonstrate a rich and significant new families of exact spatially localized and periodic wave solutions for a modified Korteweg–de Vries equation.The model applies for the description of different nonlinear structures which include breathers,interacting solitons and interacting periodic wave solutions.A joint parameter which can take both positive and negative values of unity appeared in the functional forms of those closed form solutions,thus implying that every solution is determined for each value of this parameter.The results indicate that the existence of newly derived structures depend on whether the type of nonlinearity of the medium should be considered self-focusing or defocusing.The obtained nonlinear waveforms show interesting properties that may find practical applications.
基金financial support provided by Imam Abdulrahman Bin Faisal University (IAU) through project number: 2016-237-Eng
文摘A novel tetrapolymer(TP) consisting of carboxylate, sulphonate, phosphonate and sulfur dioxide based comonomers was synthesized using Butler cyclopoymerization technique. The synthesized tetrapolymer was characterized using FTIR,1H-NMR,13CNMR and elemental analysis. The performance of the tetrapolymer as a corrosion inhibitor for St37 carbon steel in 15% HCl and 15% H2SO4 acid media was assessed using electrochemical impedance spectroscopy(EIS), linear polarization resistance(LPR), potentiodynamic polarization(PDP) and electrochemical frequency modulation(EFM) techniques. The influence of addition of a small amount of KI on the corrosion inhibition efficiency of TP was also assessed. Results obtained showed that the tetrapolymer moderately inhibited the corrosion of St37 steel in the acid media with protection efficiency of 79.5% and 61.1% at the optimum concentration of 1000 mg·L^-1 studied in HCl and H2SO4 media respectively. On addition of 5 mmol·L^-1 KI to the optimum tetrapolymer concentration, the protection efficiency was upgraded to 90.6% and 93.5% in HCl and H2SO4 environment, respectively. The enhanced performance of the polymer in the presence of KI is due to synergistic action deduced from synergism parameter(S1) which was found to be greater than unity.The tetrapolymer afforded the corrosion inhibition of St37 steel in the acid media by virtue of adsorption of the polymer molecules on the steel surface which was confirmed by ATR-FTIR analysis of the adsorbed film extracted from the steel surface. TP + KI formed complex with St37 steel surface in H2SO4 solution but not in HCl solution.
文摘A study of Eruca vesicaria, Bromelia hemisphaerica and Erythrina americana as eco-friendly corrosion inhibitors for 1018 carbon steel in 0.5 M H<sub>2</sub>SO<sub>4</sub> has been carried out by using weight loss tests, potentiodynamic polarization curves and electrochemical impedance spectroscopy measuremnts. Results have shown that the three extracts performed as good corrosion inhibitors, but the Eruca vesicaria exhibited the best performance followed by Erythrina americana. The three inhibitors formed a protective, passive film which protected the steel from corrosion. This was because they contain antioxidants present in their molecular structure with heteroatoms such as N, C and O like phenols, amino acids, etc., which react with metal and environment to form the protective film.
基金financially supported by the National Natural Science Foundation of China(51503178,52202048,52027801)National Key R&D Program of China(2017YFA0206301)+1 种基金China-Germany Collaboration Project(M-0199)Natural Science Foundation of Hebei Province(B2021203012,E2022203082)。
文摘The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging designs assembled by multiple energy harvesting,conversion and storage materials increase the energy transfer loss;the environmental energy supply is generally limited by climate and meteorological conditions,hindering the potential application of these selfpowered devices to be available at all times.Based on aerobic autoxidation of catechol,which is similar to the electrochemical oxidation of the catechol groups on the carbon materials under an electrical charge,we proposed an air-breathing chemical self-charge concept based on the aerobic autoxidation of catechol groups on oxygen-enriched carbon materials to ortho-quinone groups.Energy harvesting,conversion and storage functions could be integrated on a single carbon material to avoid the energy transfer loss among the different materials.Moreover,the assembled Cu/oxygen-enriched carbon battery confirmed the feasibility of the air-oxidation self-charging/electrical discharging mechanism for potential applications.This air-breathing chemical self-charge concept could facilitate the exploration of high-efficiency sustainable air self-charging devices.
基金funding from Researchers Supporting Project Number(RSP2024R355),King Saud University,Riyadh,Saudi Arabia.
文摘An innovative microcrystalline cellulose(MCC)natural fibre powder-reinforced PLA biocomposite was investigated using the hand lay-up technique.The polymer matrix composite(PMC)samples were prepared by varying the weight percentages(wt.%)of both PLA matrix and MCC reinforcement:pure PLA/100:0,90:10,80:20,70:30,60:40 and 50:50 wt.%,respectively.From the results obtained,MCC powder,with its impressive aspect ratio,proved to be an ideal reinforcement for the PLA,exhibiting exceptional mechanical properties.It was evident that the 80:20 wt.%biocomposite sample exhibited the maximum improvement in the tensile,flexural,notched impact,compressive strength and hardness by 28.85%,20.00%,91.66%,21.53%and 35.82%,respectively compared to the pure PLA sample.Similarly,during the thermogravimetric analysis(TGA),the same 80:20 wt.%biocomposite sample showed a minimum weight loss of 20%at 400℃,among others.The morphological study using Field Emission Scanning Electron Microscopy(FE-SEM)revealed that the uniform distribution of cellulose reinforcement in the PLA matrix actively improved the mechanical properties of the biocomposites,especially the optimal 80:20 wt.%sample.Importantly,it was evident that the optimal PLA/cellulose biocomposite sample could be a suitable and alternative sustainable,environmentally friendly and biodegradable material for semi/structural applications,replacing synthetic and traditional components.
文摘Hazards in reservoirs and lakes arising from subaerial landslides causing impact waves(or ‘lake tsunamis’) are now well known, with several recent examples having been investigated in detail. The potential scale of such hazards was not widely known at the time of the Vaiont dam project in the 1950s and early 1960s, although a small wave triggered by a landslide at another new reservoir nearby in the Dolomites(northern Italy) drew the possible hazard to the attention of the Vaiont project’s managers. The Vaiont disaster in 1963 arose from a combination of disparate and seemingly unrelated factors and circumstances that led to an occurrence that could not have been imagined at that time. The ultimate cause was a very large landslide moving very rapidly into a reservoir and displacing the water. The resulting wave overtopped the dam to a height of around 175 m and around 2000 people were killed. This paper identifies and examines all of the issues surrounding the Vaiont dam and landslide in order to identify causal factors, contributory factors(including aggravating factors) and underlying factors. In doing so, it demonstrates that the disaster arose from the Vaiont dam project and cannot be attributed simply to the landslide. Underlying geological factors gave rise to the high speed of the landslide, which would have occurred anyway at some time. However, without the contributory factors that account for the presence of the reservoir, i.e. the choice of location for the project and management of the project with respect to a possible landslide hazard, there would have been no disaster. Indeed, the disaster could have been avoided if the reservoir could have been emptied pending further ground investigations. Understanding of this case provides many lessons for future dam projects in mountainous locations but also highlights an ongoing and perhaps under-appreciated risk from similar events involving other water bodies including geologically recent lakes formed behind natural landslide dams.
基金Nati onal Key Resea rch and Development Program project funding(2018YFD1000605)。
文摘Apomixis is a reproductive model that bypasses sexual reproduction,so it does not require the combination of paternal and maternal gametes but instead results in the production of offspring directly from maternal tissues.This reproductive mode results in the same genetic material in the mother and the offspring and has signi fi cant applications in agricultural breeding.Molecular and cytological methods were used to identify the reproductive type of Zanthoxylum bungeanum(ZB).Fluorescence detection of the ampli fi ed products of 12 pairs of polymorphic SSR primers showed consistent fl uorescence signals for mother and offspring,indicating that no trait separation occurred during reproduction.In addition,the cytological observation results showed differentiation of ZB embryos(2n)from nucellar cells(2n)to form inde fi nite embryonic primordia and then form adventitious embryos(2n),indicating that the apomictic type of ZB is sporophytic apomixis.The MADS-box transcription factor ZbAGLll was highly expressed during the critical period of nucellar embryo development in ZB.Unpollinated ZbAGLll-OE Arabidopsis produced fertile offspring and exhibited an apomictic phenotype.The overexpression of ZbAGL11 increased the callus induction rate of ZB tissue.In addition,the results of the yeast two-hybrid experiment showed that ZbAGL11 could interact with the ZbCYP450 and ZbCAD11 proteins.Our results demonstrate that ZbAGL11 can cause developmental disorders of Arabidopsis fl ower organs and result in apomixis-like phenotypes.
基金supported by the National Key R&D Program of China(2018YFD1000605)Biosafety and Genetic Resource Management Project(KJZXSA202025).
文摘Chinese pepper,mainly including Zanthoxylum bungeanum and Zanthoxylum armatum,is an economically important crop popular in Asian countries due to its unique taste characteristics and potential medical uses.Numerous cultivars of Chinese pepper have been developed in China through long-term domestication.To better understand the population structure,demographic history,and speciation of Chinese pepper,we performed a comprehensive analysis at a genome-wide level by analyzing 38,395 genomic SNPs that were identified in 112 cultivated and wild accessions using a high-throughput genomewide genotyping-by-sequencing(GBS)approach.Our analysis provides genetic evidence of multiple splitting events occurring between and within species,resulting in at least four clades in Z.bungeanum and two clades in Z.armatum.Despite no evidence of recent admixture between species,we detected substantial gene flow within species.Estimates of demographic dynamics and species distribution modeling suggest that climatic oscillations during the Pleistocene(including the Penultimate Glaciation and the Last Glacial Maximum)and recent domestication events together shaped the demography and evolution of Chinese pepper.Our analyses also suggest that southeastern Gansu province is the most likely origin of Z.bungeanum in China.These findings provide comprehensive insights into genetic diversity,population structure,demography,and adaptation in Zanthoxylum.
文摘An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.
基金the National Natural Science Foundation of China(No.11272121)the Natural Sciences and Engineering Research Council of Canada(No.RGPIN-2017-03716115112)。
文摘We investigate the elastic field near the tip of an anticrack in a homogeneous decagonal quasicrystalline material subject to plane strain deformations. The phonon and phason stresses exhibit a square root singularity at the anticrack tip. Two realvalued phonon stress intensity factors and two real-valued phason stress intensity factors are introduced to scale four separate modes of deformation. We obtain four analytic functions which completely characterize the induced phonon and phason stresses as well as the displacement field. In particular, we derive a concise yet elegant representation of the anticrack contraction force.
基金financially supported by the National Key R&D Program of China(2018YFD1000605)the Project of Science and Technology Development Center,National Forestry and Grassland Administration,China(KJZXSA202025)。
文摘Plant MYB transcription factors(TFs) play crucial roles in regulating the biosynthesis of flavonoids but current analysis on their role in Zanthoxylum bungeanum Maxim.(ZBM) is far from comprehensive. In this study, we identified 270 MYB genes in ZBM and divided them into four subfamilies. The R2 R3-MYB(ZbMYB) category contained 251 genes and was classified into 33 subfamilies according to their phylogenetic results and sequence similarity. These subfamilies included 24 subgroups containing both MYBs of ZBM plants and AtMYBs, and nine subgroups containing only ZBM MYBs or AtMYBs. ZbMYBs with similar functions clustered into the same subgroup, indicating functional conservation. The subcellular localization analysis predicted that most ZbMYB genes were found in the nucleus. The transposed duplications appeared to play a major role in the expansion of the MYB gene family in ZBM. Through phylogenetic analysis and transcriptome profiling, it was found that 28 ZbMYB genes may regulate the biosynthesis of flavonoids in ZBM, and these genes expression presented distinct temporal and spatial expression patterns. In different fruit development stages of ZBM, the expression patterns of EVM0042160 and EVM0033809 genes obtained by qRT-PCR analysis are very similar to the flavonoid and anthocyanin content curves in ZBM. Further correlation analysis showed that the content of flavonoids in different fruit development stages and the transcript abundance levels of 28 ZbMYB genes have different degrees of correlation relationship. These results indicated that the ZbMYB genes might be involved in the flavonoid metabolic pathway. This comprehensive and systematic analysis of MYB family genes provided a solid foundation for further functional analysis of MYB TFs in ZBM.
基金financial support from the Natural Science Foundation of Beijing Municipality (2191001)the National Natural Science Foundation of China (51631001, 51672010 and 52001007)+1 种基金the National Key R&D Program of China(2017YFA0206301)the China Postdoctoral Science Foundation (2020M670038)。
文摘Cost-effective 3d transition metal(TM) based single atom catalysts(SACs) for oxygen reduction reaction(ORR) are potential alternatives for Pt-based electrocatalysts in fuel cells and metal-air batteries.Understanding the effects of SACs’ properties and active site composition on the catalytic performance is significant to construct highly efficient catalysts. Here, we successfully promote the activity of cobalt single atoms decorated on N-doped carbon nanosheets via tuning the content of different nitrogen components, which outperforms most reported cobalt SACs. The activity and kinetics show positive correlation trends with the content of Co-Nxand graphitic N, serving as the main active sites.Furthermore, ORR kinetics in alkaline media can be positively affected by the conductivity of catalysts while no similar relation is observed in acidic media. The slight loss of Co-Nxsites engenders a mild change of performance in alkaline media, while the decrease of Co-Nxsite activity due to chemical oxidation of carbon support and the loss of Co-Nxsites in acidic media exacerbate the degradation of performance. Our work provides an insight into the relation between ORR electron transfer kinetics and active sites in 3d TM based SACs.
基金This research was financially supported by the National Key R&D Program of China(2018YFD1000605)the Tianjin Science Fund for Distinguished Young Scholars(18JCJQJC48300).
文摘Zanthoxylum bungeanum is an important spice and medicinal plant that is unique for its accumulation of abundant secondary metabolites,which create a characteristic aroma and tingling sensation in the mouth.Owing to the high proportion of repetitive sequences,high heterozygosity,and increased chromosome number of Z.bungeanum,the assembly of its chromosomal pseudomolecules is extremely challenging.Here,we present a genome sequence for Z.bungeanum,with a dramatically expanded size of 4.23 Gb,assembled into 68 chromosomes.This genome is approximately tenfold larger than that of its close relative Citrus sinensis.After the divergence of Zanthoxylum and Citrus,the lineage-specific whole-genome duplication event q-WGD approximately 26.8 million years ago(MYA)and the recent transposable element(TE)burst~6.41 MYA account for the substantial genome expansion in Z.bungeanum.The independent Zanthoxylum-specific WGD event was followed by numerous fusion/fission events that shaped the genomic architecture.Integrative genomic and transcriptomic analyses suggested that prominent speciesspecific gene family expansions and changes in gene expression have shaped the biosynthesis of sanshools,terpenoids,and anthocyanins,which contribute to the special flavor and appearance of Z.bungeanum.In summary,the reference genome provides a valuable model for studying the impact of WGDs with recent TE activity on gene gain and loss and genome reconstruction and provides resources to accelerate Zanthoxylum improvement.
基金the funding received from Ministry of Human Resource Development(MHRD),India and Indian Council of Medical Research(ICMR),India projects(IMPRINT-6714UAY/MHRD_IITK_006),MHRD,India project(SPARC/2018–2019/P612/S)+3 种基金Science and Engineering Research Board(SERB),India project(IPA/2020/000026)Department of Science and Technology(DST),Govt.of India project(DST/NM/NT-2018/48)Department of Biotechnology(DBT),Govt.of India project(DBT/IN/SWEDEN/08/AK/2017–18)Ortho Regenics Private Limited(ORPL)。
文摘Magnesium-based biomaterials have been in extensive research for orthopedic applications for decades due to their optimal mechanical features and osteopromotive nature;nevertheless,rapid degradation restricts their clinical applicability.In this study,pristine magnesium was purified(P-Mg)using a melt self-purification approach and reinforced using indigenously synthesized nanohydroxyapatite(HAP,0.6 wt.%)and strontium substituted nanohydroxyapatite(SrHAP,0.6 wt.%)using a low-cost stir assisted squeeze casting method to control their degradation rate.Using electron back-scattered diffraction(EBSD)and X-ray diffraction(XRD)examinations,all casted materials were carefully evaluated for microstructure and phase analysis.Mechanical characteristics,in vitro degradation,and in vitro biocompatibility with murine pre-osteoblasts were also tested on the fabricated alloys.For in vivo examination of bone formation,osteointegration,and degradation rate,the magnesium-based alloys were fabricated as small cylindrical pins with a diameter of 2.7 mm and a height of 2 mm.The pins were implanted in a critical-sized defect in a rat femur shaft(2.7 mm diameter and 2 mm depth)for 8 weeks and evaluated by microCT and histological evaluation for bone growth and osteointegration.When compared to P-Mg and P-MgHAP,micro-CT and histological analyses revealed that the P-MgSrHAP group had the highest bone formation towards the periphery of the implant and hence maximum osteointegration.When the removed pins from the bone defect were analyzed using GIXRD,they displayed hydroxyapatite peaks that were consistent with bio-integration.For P-Mg,P-MgHAP,and P-MgSrHAP 8 weeks after implantation,in vivo degradation rates derived from micro-CT were around 0.6 mm/year,0.5 mm/year,and 0.1 mm/year,respectively.Finally,P-MgSrHAP possesses the requisite degradation rate as well as sufficient mechanical and biological properties,indicating that it has the potential to be used in the development/fabrication of biodegradable bioactive orthopaedic implants.
文摘A mathematical approach was proposed to investigate the impact of high penetration of large-scale photovoltaic park(LPP) on small-signal stability of a power network and design of hybrid controller for these units.A systematic procedure was performed to obtain the complete model of a multi-machine power network including LPP.For damping of oscillations focusing on inter-area oscillatory modes,a hybrid controller for LPP was proposed.The performance of the suggested controller was tested using a 16-machine 5-area network.The results indicate that the proposed hybrid controller for LPP provides sufficient damping to the low-frequency modes of power system for a wide range of operating conditions.The method presented in this work effectively indentifies the impact of increased PV penetration and its controller on dynamic performance of multi-machine power network containing LPP.Simulation results demonstrate that the model presented can be used in designing of essential controllers for LPP.
文摘The main objective of this work is to predict the mixing of two different miscible oils in a very long channel. The background to this problem relates to the mixing of heavy and light oil in a pipeline. As a first step, a 2D channel with an aspect ratio of 250 is considered. The batch-mixing of two miscible crude oils with different viscosities and densities is modeled using an unsteady laminar model and unsteady RANS model available in the commercial CFD solver ANSYSFluent. For a comparison, a LES model was used for a 3D version of the 2D channel. The distinguishing feature of this work is the Lagrangian coordinate system utilized to set no-slip wall boundary conditions. The global CFD model has been validated against classical analytical solutions. Excellent agreement has been achieved. Simulations were carried out for a Reynolds number of 6300(calculated using light oil properties) and a Schmidt number of 10~4. The results show that, in contrast to the unsteady RANS model, the LES and unsteady laminar models produce comparable mixing dynamics for two oils in the channel. Analysis of simulations also shows that, for a channel length of 100 m and a height of 0.4 m, the complete mixing of two oils across the channel has not been achieved. We showed that the mixing zone consists of the three different mixing sub-zones, which have been identified using the averaged mass fraction of the heavy oil along the flow direction. The first sub-zone corresponds to the main front propagation area with a length of several heights of the channel. The second and third sub-zones are characterized by so-called shear-flow-driven mixing due to the Kelvin–Helmholtz vortices occurring between oils in the axial direction. It was observed that the third sub-zone has a steeper mass fraction gradient of the heavy oil in the axial direction in comparison with the second sub-zone, which corresponds to the flow-averaged mass fraction of 0.5 for the heavy oil.
基金supported by the Fundamental Research Funds for the Central Universities of China(grant numbers 3132016353,3132019117,3132019122)the Natural Sciences and Engineering Research Council of Canada
文摘With the rapid development of marine renewable energy technologies, the demand to mitigate the fluctuation of variable generators with energy storage technologies continues to increase. Offshore compressed air energy storage (OCAES) is a novel flexible-scale energy storage technology that is suitable for marine renewable energy storage in coastal cities, islands, offshore platforms, and offshore renewable energy farms. For deep-water applications, a marine riser is necessary for connecting floating platforms and subsea systems. Thus, the response characteristics of marine risers are of great importance for the stability and safety of the entire OCAES system. In this study, numerical models of two kinds of flexible risers, namely, catenary riser and lazy wave riser, are established in OrcaFlex software. The static and dynamic characteristics of the catenary and the lazy wave risers are analyzed under different environment conditions and internal pressure levels. A sensitivity analysis of the main parameters affecting the lazy wave riser is also conducted. Results show that the structure of the lazy wave riser is more complex than the catenary riser;nevertheless, the former presents better response performance.