期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application of Machine Learning for Flood Prediction and Evaluation in Southern Nigeria
1
作者 Emeka Bright Ogbuene Chukwumeuche Ambrose Eze +9 位作者 Obianuju Getrude Aloh Andrew Monday Oroke Damian Onuora Udegbunam Josiah Chukwuemeka Ogbuka Fred Emeka Achoru Vivian Amarachi Ozorme Obianuju Anwara Ikechukwu Chukwunonyelum Anthonia Nneka Nebo Obiageli Jacinta Okolo 《Atmospheric and Climate Sciences》 2024年第3期299-316,共18页
This study explored the application of machine learning techniques for flood prediction and analysis in southern Nigeria. Machine learning is an artificial intelligence technique that uses computer-based instructions ... This study explored the application of machine learning techniques for flood prediction and analysis in southern Nigeria. Machine learning is an artificial intelligence technique that uses computer-based instructions to analyze and transform data into useful information to enable systems to make predictions. Traditional methods of flood prediction and analysis often fall short of providing accurate and timely information for effective disaster management. More so, numerical forecasting of flood disasters in the 19th century is not very accurate due to its inability to simplify complex atmospheric dynamics into simple equations. Here, we used Machine learning (ML) techniques including Random Forest (RF), Logistic Regression (LR), Naïve Bayes (NB), Support Vector Machine (SVM), and Neural Networks (NN) to model the complex physical processes that cause floods. The dataset contains 59 cases with the goal feature “Event-Type”, including 39 cases of floods and 20 cases of flood/rainstorms. Based on comparison of assessment metrics from models created using historical records, the result shows that NB performed better than all other techniques, followed by RF. The developed model can be used to predict the frequency of flood incidents. The majority of flood scenarios demonstrate that the event poses a significant risk to people’s lives. Therefore, each of the emergency response elements requires adequate knowledge of the flood incidences, continuous early warning service and accurate prediction model. This study can expand knowledge and research on flood predictive modeling in vulnerable areas to inform effective and sustainable contingency planning, policy, and management actions on flood disaster incidents, especially in other technologically underdeveloped settings. 展开更多
关键词 Machine Learning FLOOD PREDICTION EVALUATION Southern Nigeria
下载PDF
Application of Predictive Model for Efficient Cassava (Manihot esculenta Crantz) Yield in the Face of Climate Variability in Enugu State, Nigeria
2
作者 Emeka Bright Ogbuene Tonia Nkiru Nwobodo +7 位作者 Obianuju Gertrude Aloh Achoru Fred Emeka Josiah C. Ogbuka Vivian Amarachi Ozorme Andrew M. Oroke Obiageli Jacinta Okolo Anwara Obianuju Amara E. S. Enemuo 《American Journal of Climate Change》 2024年第2期361-389,共29页
Climate variability as occasioned by conditions such as extreme rainfall and temperature, rainfall cessation, and irregular temperatures has considerable impact on crop yield and food security. This study develops a p... Climate variability as occasioned by conditions such as extreme rainfall and temperature, rainfall cessation, and irregular temperatures has considerable impact on crop yield and food security. This study develops a predictive model for cassava yield (Manihot esculenta Crantz) amidst climate variability in rainfed zone of Enugu State, Nigeria. This study utilized data of climate variables and tonnage of cassava yield spanning from 1971 to 2012;as well as information from a questionnaire and focus group discussion from farmers across two seasons in 2023 respectively. Regression analysis was employed to develop the predictive model equation for seasonal climate variability and cassava yield. The rainfall and temperature anomalies, decadal change in trend of cassava yield and opinion of farmers on changes in rainfall season were also computed in the study. The result shows the following relationship between cassava and all the climatic variables: R2 = 0.939;P = 0.00514;Cassava and key climatic variables: R2 = 0.560;P = 0.007. The result implies that seasonal rainfall, temperature, relative humidity, sunshine hours and radiation parameters are key climatic variables in cassava production. This is supported by computed rainfall and temperature anomalies which range from −478.5 to 517.8 mm as well as −1.2˚C to 2.3˚C over the years. The questionnaire and focus group identified that farmers experienced at one time or another, late onset of rain, early onset of rain or rainfall cessation over the years. The farmers are not particularly sure of rainfall and temperature characteristics at any point in time. The implication of the result of this study is that rainfall and temperature parameters determine the farming season and quantity of productivity. Hence, there is urgent need to address the situation through effective and quality weather forecasting network which will help stem food insecurity in the study area and Nigeria at large. The study made recommendations such as a comprehensive early warning system on climate variability incidence which can be communicated to local farmers by agro-meteorological extension officers, research on crops that can grow with little or no rain, planning irrigation scheme, and improving tree planting culture in the study area. 展开更多
关键词 Climate VARIABILITY Cassava (Manihot esculenta Crantz) Predictive Model YIELD
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部