期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
DESIGN AND FABRICATION OF A MICRO THERMAL ACTUATOR FOR CELLULAR GRASPING 被引量:1
1
作者 陈浩然 李文荣 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第2期132-139,共8页
The development of a novel polymer-based micro robotic gripper that can be actuated in a fluidic medium is presented in this paper.Our current work is to explore new materials and designs for thermal actuators to achi... The development of a novel polymer-based micro robotic gripper that can be actuated in a fluidic medium is presented in this paper.Our current work is to explore new materials and designs for thermal actuators to achieve micromanipulation of live biological cells.We used parylene C to encapsulate a metal heater,resulting in effectively a tri-layered thermal actuator.Parylene C is a bio-compatible dielectric polymer that can serve as a barrier to various gases and chemicals. Therefore,it is suitable to serve as a thermal/electrical/chemical isolation material for protecting the metal heater from exposing to an aqueous environment.We have demonstrated parylene actuators (2mm×100μm×0.5μm)to operate in an aqueous environment using 10 to 80mW input power.The temperature of these actuators at full deflection was estimated to be~60℃,which is much lower than the typical requirement of>100℃ to actuate other conventional MEMS actuators.Danio rerio follicles in fluidic medium were captured successfully using these actuators.Moreover,these actuators were found to be responsive to moderate rise in environmental temperature,and hence,we could vary the fluidic medium temperature to actuate trimorphs on a chip without any input of electrical energy, i.e.,raising the fluidic temperature from 23℃ to 60℃ could actuate the trimorphs to grasp follicles of ~1mm size in diameter.At 60℃,the embryos inside the follicles were observed to be alive,i.e.,they were still moving in the biological fluid isolated by the follicle membrane.The smallest follicles grasped were~500μm in diameter using 800μm×130μm×0.6μm actuators.The fabrication process,modeling, and optimization of the trimorph actuators are presented.Based on the successful operation of these polymer-based actuators,we are currently developing multifinger thermal microgrippers for cellular grasping and manipulation,which can potentially be hybridly integrated with circuits for computer control. 展开更多
关键词 thermal actuator MICROGRIPPER cell manipulation underwater microactuator
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部