Semiconductor mode-locked lasers(MLLs)are promising frequency comb sources for dense wavelength-divisionmultiplexing(DWDM)data communications.Practical data communication requires a frequency-stable comb source in a t...Semiconductor mode-locked lasers(MLLs)are promising frequency comb sources for dense wavelength-divisionmultiplexing(DWDM)data communications.Practical data communication requires a frequency-stable comb source in a temperature-varying environment and a minimum tone spacing of 25 GHz to support high-speed DWDM transmissions.To the best of our knowledge,however,to date,there have been no demonstrations of comb sources that simultaneously offer a high repetition rate and stable mode spacing over an ultrawide temperature range.Here,we report a frequency comb source based on a quantum dot(QD)MLL that generates a frequency comb with stable mode spacing over an ultrabroad temperature range of 20–120℃.The two-section passively mode-locked In As QD MLL comb source produces an ultra-stable fundamental repetition rate of 25.5 GHz(corresponding to a 25.5 GHz spacing between adjacent tones in the frequency domain)with a variation of 0.07 GHz in the tone spacing over the tested temperature range.By keeping the saturable absorber reversely biased at-2 V,stable mode-locking over the whole temperature range can be achieved by tuning the current of the gain section only,providing easy control of the device.At an elevated temperature of 100℃,the device shows a 6 d B comb bandwidth of 4.81 nm and 31 tones with>36 d B optical signal-to-noise ratio.The corresponding relative intensity noise,averaged between 0.5 GHz and 10 GHz,is-146 d Bc∕Hz.Our results show the viability of the In As QD MLLs as ultra-stable,uncooled frequency comb sources for low-cost,large-bandwidth,and low-energy-consumption optical data communications.展开更多
基金Royal Academy of Engineering(RF201617/16/28)Engineering and Physical Sciences Research Council(EP/R041792/1,EP/T01394X/1)。
文摘Semiconductor mode-locked lasers(MLLs)are promising frequency comb sources for dense wavelength-divisionmultiplexing(DWDM)data communications.Practical data communication requires a frequency-stable comb source in a temperature-varying environment and a minimum tone spacing of 25 GHz to support high-speed DWDM transmissions.To the best of our knowledge,however,to date,there have been no demonstrations of comb sources that simultaneously offer a high repetition rate and stable mode spacing over an ultrawide temperature range.Here,we report a frequency comb source based on a quantum dot(QD)MLL that generates a frequency comb with stable mode spacing over an ultrabroad temperature range of 20–120℃.The two-section passively mode-locked In As QD MLL comb source produces an ultra-stable fundamental repetition rate of 25.5 GHz(corresponding to a 25.5 GHz spacing between adjacent tones in the frequency domain)with a variation of 0.07 GHz in the tone spacing over the tested temperature range.By keeping the saturable absorber reversely biased at-2 V,stable mode-locking over the whole temperature range can be achieved by tuning the current of the gain section only,providing easy control of the device.At an elevated temperature of 100℃,the device shows a 6 d B comb bandwidth of 4.81 nm and 31 tones with>36 d B optical signal-to-noise ratio.The corresponding relative intensity noise,averaged between 0.5 GHz and 10 GHz,is-146 d Bc∕Hz.Our results show the viability of the In As QD MLLs as ultra-stable,uncooled frequency comb sources for low-cost,large-bandwidth,and low-energy-consumption optical data communications.