Demand for power in Malaysia is projected to double the current demand in 2030. The current fuel mix for power generation is heavily dependent on fossil fuels. This has created energy supply and environmental sustaina...Demand for power in Malaysia is projected to double the current demand in 2030. The current fuel mix for power generation is heavily dependent on fossil fuels. This has created energy supply and environmental sustainability concerns to the industry. Furthermore, at the recent United Nations Climate Change Conference 2009-15th Conference of Parties (COP15), Malaysia had given the commitment to voluntary reduction of up to 40% in terms of emissions intensity of GDP by the year 2020 compared to 2005 levels. Renewable energy (RE) provides the best alternative in addressing these issues. In 2001, RE was regarded as the fifth fuel in the new Five Fuel Strategy of the National Energy Policy. Small Renewable Energy Program (SREP) was launched with the main objective of supporting the government's strategy to intensify the development of RE as the fifth fuel resource. Biomass, the largest amongst the main RE resources available, can be used for heat and power generation. With optimum utilization, the value ofbiomass resources in Malaysia is estimated to be more than RM 500 billion (USD 156 billion) over the next 20 years. Malaysia has the capacity to use renewable energy resources to address the national energy agenda.展开更多
Lignocellulosic materials are promising alternative feedstocks for bioethanol production. However, the recalcitrant nature of lignocellulosic biomass necessitates an efficient pretreatment pretreatment step to improve...Lignocellulosic materials are promising alternative feedstocks for bioethanol production. However, the recalcitrant nature of lignocellulosic biomass necessitates an efficient pretreatment pretreatment step to improve the yield of fermentable sugars and maximizing the enzymatic hydrolysis efficiency. Microwave pretreatment may be a good alternative as it can reduce the pretreatment time and improve the enzymatic activity during hydrolysis. The overall goal of this paper is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass and microwave assisted enzymatic reaction or Microwave Irradiation-Enzyme Coupling Catalysis (MIECC). In the present study, a comparison of microwave assisted alkali pretreatment was tried using Oil Palm empty fruit bunch. The microwave assisted alkali pretreatment of EFB using NaOH, significantly improved the enzymatic saccharification of EFB by removing more lignin and hemicellulose and increasing its accessibility to hydrolytic enzymes. The results showed that the optimum pretreatment condition was 3% (w/v) NaOH at 180 W for 12 minutes with the optimum component loss of lignin and holocellulose of about 74% and 24.5% respectively. The subsequent enzymatic saccharification of EFB pretreated by microwave assisted NaOH (3% w/v);resulted in 411 mg of reducing sugar per gram EFB at cellulose enzyme dosage of 20 FPU. The overall enhancement by the microwave treatment during the microwave assisted alkali pretreatment and microwave assisted enzymatic hydrolysis was 5.8 fold. The present study has highlighted the importance of well controlled microwave assisted enzymatic reaction to enhance the overall reaction rate of the process.展开更多
Agricultural biomass presents a promising feedstock, which may contribute to a transition to low carbon fuels. A significant amount of research has identified a number of challenges when combusting agricultural feedst...Agricultural biomass presents a promising feedstock, which may contribute to a transition to low carbon fuels. A significant amount of research has identified a number of challenges when combusting agricultural feedstock, related primarily to energy value, ash, emissions, corrosion and combustion characteristics. The mitigation of such challenges can be addressed more cost effectively when dealing with large or utility scale combustion. The costs associated with harvesting, conversion, transportation and ultimately, market development all create additional roadblocks for the creation of an agricultural biomass industry. Nova Scotia, an Eastern Canadian province, has significant land resources, however it is prone to wet spring and as yet does not have a supply chain established for such an industry. The main components of supply, processing and conversion and demand simply do not yet exist. This research addresses one aspect of this supply chain by attempting to develop a fuel suitable for a) existing markets (local residential wood and wood pellet stoves and b) a scale that will support industry engagement. The outcomes of this research have determined that such a venture is possible and presents empirical preprocessing conditions to achieve a competitive agricultural fuel.展开更多
In this study,a packed bed reactor was developed to investigate the gasification process of coal particles.The effects of coal particle size and heater temperature of reactor were examined to identify the thermochemic...In this study,a packed bed reactor was developed to investigate the gasification process of coal particles.The effects of coal particle size and heater temperature of reactor were examined to identify the thermochemical processes through the packed bed.Three different coal samples with varying size,named as A,B,and C,are used,and the experimental results show that the packed bed with smaller coal size has higher temperature,reaching 624°C,582°C,and 569°C for coal A,B,and C,respectively.In the case of CO formation,the smaller particle size has greater products in the unit of mole fraction over the area of generation.However,the variation in the porosity of the packed bed due to different coal particle sizes affects the reactions through the oxygen access.Consequently,the CO formation is least from the coal packed bed formed by the smallest particle size A.A second test with the temperature variations shows that the higher heater temperature promotes the chemical reactions,resulting in the increased gas products.The findings indicate the important role of coal seam porosity in underground coal gasification application,as well as temperature to promote the syngas productions.展开更多
Inside the second experimental wave energy converter (WEC) launched at the Lysekil research site on the Swedish west coast in March 2009 a number of sensor systems were installed for measuring the mechanical performan...Inside the second experimental wave energy converter (WEC) launched at the Lysekil research site on the Swedish west coast in March 2009 a number of sensor systems were installed for measuring the mechanical performance of the WEC and its mechanical subsystems. One of the measurement systems was a set-up of 7 laser triangulation sensors for measuring relative displacement of the piston rod mechanical lead-through transmission in the direct drive. Two measurement periods, separated by 2.5 month, are presented in this paper. One measurement is made two weeks after launch and another 3 months after launch. Comparisons and correlations are made between different sensors measuring simultaneously. Noise levels are investigated. Filtering is discussed for further refinement of the laser triangulation sensor signals in order to separate noise from actual physical displacement and vibration. Measurements are presented from the relative displacement of the piston rod mechanical lead-through, from magnetic flux in the air gap, mechanical strain in the WEC structure, translator position and piston rod axial displacement and active AC power. Investigation into the measurements in the time domain with close-ups, in the frequency domain with Fast Fourier transform (FFT) and with time-frequency analysis with short time Fourier transform (STFT) is carried out to map the spectral content in the measurements. End stop impact is clearly visible in the time-frequency analysis. The FFT magnitude spectra are investigated for identifying the cogging bandwidth among other vibrations. Generator cogging, fluctuations in the damping force and in the Lorenz forces in the stator are distinguished and varies depending on translator speed. Vibrations from cogging seem to be present in the early measurement period while not so prominent in the late measurement period. Vibration frequencies due to wear are recognized by comparing with the noise at generator standstill and the vibration sources in the generator. It is concluded that a moving average is a sufficient filter in the time domain for further analysis of the relative displacement of the piston rod mechanical lead-through transmission.展开更多
Fuel cell powered vehicles have been developed as another alternative to internal combustion engine powered vehicles for some applications including passenger cars, buses, trains, motorcycles, forklifts, electric whee...Fuel cell powered vehicles have been developed as another alternative to internal combustion engine powered vehicles for some applications including passenger cars, buses, trains, motorcycles, forklifts, electric wheelchairs, electric trolleybuses, medical carts, military engines, personal sports craft, mobility devices and other self propelled equipment. Up to now, many researches have focused on the development of the power module in the Fuel cell vehicles (FCVs) and the components of these systems such as membranes, bipolar plates, and electrodes. However, our work in this study focuses on operating the integrated fuel cell power module system efficiently for various operating conditions such as pressure, relative humidity and operating modes. In our validation we have utilized PEMFC single cell, with active area geometry 16 cm2 and of 120 cm2. Some results obtained in our study shown significant performance indicators for PEMFC stack (composed of 2 cells and 4 cells in a series) at different humidification levels.展开更多
Solar radiation,temperature,and relative humidity,depending on severity,can cause asphalt structural damage besides inducing the Urban Heat Island(UHI)effect.Such damage is more common in countries with extreme weathe...Solar radiation,temperature,and relative humidity,depending on severity,can cause asphalt structural damage besides inducing the Urban Heat Island(UHI)effect.Such damage is more common in countries with extreme weather conditions.The ultimate failure of asphalt pavements under extreme weather conditions causes significant economic losses[1].Apart from weather conditions,pavement thickness,depth and porosity also play a significant role in influencing the functional and mechanical properties of pavement systems.Air-void and pavement microstructures do not have continuous spatial and transient properties.展开更多
The effect of macadamia nut shell biochar on nitrogen,potassium,phosphorus,magnesium,calcium and sodium concentrations in potting mix used to grow Eucalyptus nitens seedlings was investigated in a glasshouse experimen...The effect of macadamia nut shell biochar on nitrogen,potassium,phosphorus,magnesium,calcium and sodium concentrations in potting mix used to grow Eucalyptus nitens seedlings was investigated in a glasshouse experiment.The treatments combined two fertiliser rates(50 and 100% rate of the commercial mix commonly used in forestry nurseries) with eight biochar rates(0,2,5,10,20,50,80 and 100 t ha;) arranged in a randomised complete block with three replicates of four sample plants.Nutrients were quantified in the potting mix and seedling leaves at four destructive harvests 135,177,219 and269 days after planting.Biochar significantly increased nitrate-N,Colwell P,Colwell K and exchangeable Na andreduced ammonium-N,Mg and Ca concentrations in the potting mix.Seedling leaf concentrations of P,K and Na were increased by biochar application,while N remained dependent on fertiliser rate only.Mg and Ca leaf concentrations decreased in response to increasing biochar rates.Elevated nitrate-N and decreased ammonium-N concentrations suggest that biochar might have increased nitrification in the potting mix.We presumed that biochar mediated processes that reduced uptake of P and K when high doses of biochar were combined with full fertilisation.Changes in potting mix K,Na,Mg and Ca were consistent with selective adsorption of ions to biochar surfaces.展开更多
Photocatalytic water oxidation based on semiconductors usually suffers from poor charge transfer from the bulk to the interface,which is necessary for oxygen generation.Here,we construct a hybrid artificial photosynth...Photocatalytic water oxidation based on semiconductors usually suffers from poor charge transfer from the bulk to the interface,which is necessary for oxygen generation.Here,we construct a hybrid artificial photosynthesis system for photocatalytic water oxidation.The system consists of BiVO4as the light harvester,a transitional metal complex(M(dca)2,M=Co,Ni,dca:dicyanamide)as the water oxidation catalyst,and S2O82?as a sacrificial electron acceptor.The system exhibits enhanced oxygen evolution activity when M(dca)2is introduced.The BiVO4/Co(dca)2and Bi‐VO4/Ni(dca)2systems exhibit excellent oxygen evolution rates of508.1and297.7μmol/(h·g)compared to the pure BiVO4which shows a photocatalytic oxygen evolution rate of252.2μmol/(h·g)during6h of photocatalytic reaction.Co(dca)2is found to be more effective than Ni(dca)2as a water oxidation catalyst.The enhanced photocatalytic performance is ascribed to the M(dca)2‐engineered BiVO4/electrolyte interface energetics,and to the M(dca)2‐catalyzed surface water oxidation.These two factors lead to a decrease in the energy barrier for hole transfer from the bulk to the surface of BiVO4,which promotes the water oxidation kinetics.展开更多
The aim of this study is to find an optimal design for a distributed hybrid renewable energy system(HRES) for a residential house in the UK. The hybrid system, which consists of wind turbines, PV arrays, a biodiesel g...The aim of this study is to find an optimal design for a distributed hybrid renewable energy system(HRES) for a residential house in the UK. The hybrid system, which consists of wind turbines, PV arrays, a biodiesel generator, batteries and converters, is designed to meet the known dynamic electrical load of the house and make use of renewable energy resources available locally. Hybrid Optimization Model for Electric Renewables(HOMER) software is used for this study. Different combinations of wind turbines, PV arrays, a biodiesel generator and batteries are evaluated and compared using the NPC(Net Present Cost) method to find the optimal solutions. The HRES is modeled, simulated and optimized using HOMER. The results showed that the wind-biodiesel engine-battery system was the best with the lowest NPC(USD 60254) and the lowest COE(Cost of Energy, USD 0.548/k Wh) while the second best system added PV arrays. This study gives evidence of the key contribution wind turbines make to HRES due to abundant wind resources in the UK, especially in Wales.展开更多
The photocatalytic properties of surface TiO2 supported zeolite in a semi batch reactor for the reduction of Cr(VI) in the presence of methyl orange dye were investigated. The prepared composite photocatalyst was ch...The photocatalytic properties of surface TiO2 supported zeolite in a semi batch reactor for the reduction of Cr(VI) in the presence of methyl orange dye were investigated. The prepared composite photocatalyst was characterized by SEM-EDS (scanning electron microscopy and energy dispersive spectroscopy). The effects of operating parameters such as the pH and concentration of Cr(VI) in the absence and presence of dye were evaluated. The Cr(VI) reduction was more efficient in the ternary system (Cr(VI)/dye/TiO2-zeolite) than that of the corresponding binary system (Cr(VI)/TiO2-zeolite). The extent of metal reduction after 210 min of irradiation was 68% at pH = 3 for the ternary system. In order to optimize the effectiveness of the composite photocatalyst on the photocatalytic reduction of Cr(VI), kinetics and isotherm models were applied. The kinetics of Cr(VI) in the presence of dye on TiO2/zeolite composite photocatalyst followed the pseudo-first-order model while the equilibrium data correlated reasonably well with Freundlich isotherm.展开更多
Like in other sectors of activity, the sustainability in refrigeration systems is a mandatory goal to achieve, namely at house holdings, bars and restaurants, where small-scale refrigerators and freezers are widely us...Like in other sectors of activity, the sustainability in refrigeration systems is a mandatory goal to achieve, namely at house holdings, bars and restaurants, where small-scale refrigerators and freezers are widely used. The aim of this work is to demonstrate experimentally, trough measurements carried out in these equipments, the improvement that can be achieved if several modifications are implemented in traditional household refrigeration systems. In addition, it was also simulated and analysed experimentally a slightly different equipment, a refrigeration system used for draught beverages. Both systems work on a single vapour compression refrigeration with R-134a as working fluid. In the end, by implemented the modifications tested in the virtual model, it was possible to improve their thermal behaviour, a decrease in electrical energy consumption, as well as, the associated CO2 emissions reduction can be attained. In this project, the CFD (Computational Fluid Dynamics) soffware--ANSYS Fluent was used to simulate the ambient temperature and velocity fields inside the refrigerator and in that way to validate the measured results.展开更多
Hydromagnetic nanoliquid establish an extraordinary category of nanoliquids that unveil both liquid and magnetic attributes.The interest in the utilization of hydromagnetic nanoliquids as a heat transporting medium st...Hydromagnetic nanoliquid establish an extraordinary category of nanoliquids that unveil both liquid and magnetic attributes.The interest in the utilization of hydromagnetic nanoliquids as a heat transporting medium stem from a likelihood of regulating its flow along with heat transportation process subjected to an externally imposed magnetic field.This analysis reports the hydromagnetic nanoliquid impact on differential type(second-grade)liquid from a convectively heated extending surface.The well-known Darcy-Forchheimer aspect capturing porosity characteristics is introduced for nonlinear analysis.Robin conditions elaborating heat-mass transportation effect are considered.In addition,Ohmic dissipation and suction/injection aspects are also a part of this research.Mathematical analysis is done by implementing the basic relations of fluid mechanics.The modeled physical problem is simplified through order analysis.The resulting systems(partial differential expressions)are rendered to the ordinary ones by utilizing the apposite variables.Convergent solutions are constructed employing homotopy algorithm.Pictorial and numeric result are addressed comprehensively to elaborate the nature of sundry parameters against physical quantities.The velocity profile is suppressed with increasing Hartmann number(magnetic parameter)whereas it is enhanced with increment in material parameter(second-grade).With the elevation in thermophoresis parameter,temperature and concentration of nanoparticles are accelerated.展开更多
Efforts towards achieving high access to cooking with clean energy have not been transformative due to a limited understanding of the clean-energy drivers and a lack of evidence-based clean-energy policy recommendatio...Efforts towards achieving high access to cooking with clean energy have not been transformative due to a limited understanding of the clean-energy drivers and a lack of evidence-based clean-energy policy recommendations.This study addresses this gap by building a high-performing machine learning model to predict and understand the mechanisms driving energy poverty-specifically access to cooking with clean energy.In a first-of-a-kind,the estimated cost of US$14.5 trillion to enable universal access to cooking with clean energy encompasses all the intermediate inputs required to build self-sufficient ecosystems by creating value-addition sectors.Unlike pre-vious studies,the data-driven clean-cooking transition pathways provide foundations for shaping policy and building energy models that can transform the complex energy and cooking landscape.Developing these path-ways is necessary to increase people’s financial resilience to tackle energy poverty.The findings also show the absence of a linear relationship between electricity access and clean cooking-evidencing the need for a rapid paradigm shift to address energy poverty.A new fundamental approach that focuses on improving and sustaining the financial capacity of households through a systems approach is required so that they can afford electricity or fuels for cooking.展开更多
Titanium dioxide(TiO_(2))has been widely investigated for photocatalytic H_(2) evolution and photoelectrochemical(PEC)water splitting since 1972.However,its wide bandgap(3.0-3.2 eV)limits the optical absorption of TiO...Titanium dioxide(TiO_(2))has been widely investigated for photocatalytic H_(2) evolution and photoelectrochemical(PEC)water splitting since 1972.However,its wide bandgap(3.0-3.2 eV)limits the optical absorption of TiO_(2) for sufficient utilization of solar energy.Blackening TiO_(2) has been proposed as an effective strategy to enhance its solar absorption and thus the photocatalytic and PEC activities,and aroused widespread research interest.In this article,we reviewed the recent progress of black TiO_(2) for photocatalytic H_(2) evolution and PEC water splitting,along with detailed introduction to its unique structural features,optical property,charge carrier transfer property and related theoretical calculations.As summarized in this review article,black TiO_(2) could be a promising candidate for photoelectrocatalytic hydrogen generation via water splitting,and continuous efforts are deserved for improving its solar hydrogen efficiency.展开更多
Utilization of visible light is of crucial importance for exploiting efficient semiconductor catalysts for solar water splitting. In this study, an advanced ion implantation method was utilized to dope Cu ions into Zn...Utilization of visible light is of crucial importance for exploiting efficient semiconductor catalysts for solar water splitting. In this study, an advanced ion implantation method was utilized to dope Cu ions into ZnO nanorod arrays for photoelectrochemical water splitting in visible light. X-ray diffraction (XRD) and X-ray photo-electron spectroscopy (XPS) results revealed that Cu^+ together with a small amount of Cu^2+ were highly dispersed within the ZnO nanorod arrays. The Cu ion doped ZnO nanorod arrays displayed extended optical absorption and enhanced photoelectrochemical performance under visible light illumination (A 〉 420 nm). A considerable photocurrent density of 18 μA/cm^2 at 0.8 V (vs. a saturated calomel electrode) was achieved, which was about 11 times higher than that of undoped ZnO nanorod arrays. This study proposes that ion implantation could be an effective approach for developing novel visible-light-driven photocatalytic materials for water splitting.展开更多
The rise of personalized flexible electronics has promoted the rapid development of flexible supercapacitors due to their long service life,fast charging-discharging rates and safe operation.Different from the traditi...The rise of personalized flexible electronics has promoted the rapid development of flexible supercapacitors due to their long service life,fast charging-discharging rates and safe operation.Different from the traditional flexible supercapacitors,the all-in-one integrated flexible supercapacitors are more resistant to deformation and lower interface resistance,which have a broader application prospect in the field of flexible electronics.This review briefly summarizes the preparation methods and electrochemical properties of some typical all-in-one supercapacitors,represented by planar and fibrous structures in recent years.Firstly,the basic understanding of traditional flexible supercapacitors and all-in-one integrated flexible supercapacitors,and the key parameters of the performance of flexible supercapacitors are introduced.Subsequently,the hydrogel matrix all-in-one supercapacitors with different functional characteristics(stretchable,self-healing and compressible)and the nonhydrogel matrix(separator,flexible membrane)all-in-one supercapacitors are discussed.Furthermore,the challenges and future development of flexible supercapacitors are considered.展开更多
This paper presents a literature review on the recent research progress in liquid desiccant dehumidification and air conditioning systems.The physical features of various liquid desiccant materials and their dehumidif...This paper presents a literature review on the recent research progress in liquid desiccant dehumidification and air conditioning systems.The physical features of various liquid desiccant materials and their dehumidification performances have been summarized.With the aim to improve the dehumidification characteristics,mixed sol-vents desiccants have become research hot topics recently.Various types of dehumidifiers and their integration with liquid desiccant dehumidification system have been reviewed.The combination of liquid desiccant dehumid-ification system with solar collector,vapour compression system,heat pump system,CHP system,etc.have been grouped and compared.It is shown that the majority of the recent research work for liquid desiccant dehumid-ification systems has concentrated on numerical simulations,a considerable amount of works are still required for the practical investigations of innovative material(mixed solvents)and hybrid systems.展开更多
A systematic investigation of the Li2Ti1-x(Mg_(1/3)Nb_(2/3))xO_(3)(0.1≤x≤0.35)solid solutions synthesized by traditional solid-state reaction method is reported in this work.In the composition range of 0.1≤x≤0.25,...A systematic investigation of the Li2Ti1-x(Mg_(1/3)Nb_(2/3))xO_(3)(0.1≤x≤0.35)solid solutions synthesized by traditional solid-state reaction method is reported in this work.In the composition range of 0.1≤x≤0.25,a monoclinic rock salt structured solid solution was formed.When x increased to 0.3,a phase transition from monoclinic to cubic phase,along with an order-disorder phase transition,was observed.With x increased from 0.1 to 0.35,the microwave permittivity(εr)and temperature coefficient of resonant frequency(TCF)of the Li2Ti1-x(Mg_(1/3)Nb_(2/3))xO_(3)ceramics decreased linearly from 21.0 to 18.6,+27.1 to-19.4 ppm/℃,respectively.The Li_(2)Ti_(0.75)(Mg_(1/3)Nb_(2/3))0.25O_(3)ceramic sintered at 1170℃shows high performance of microwave dielectric properties with aεr~19.6,a Qf(Q=quality factor=1/dielectric loss;f=resonant frequency)~109,770 GHz(at 7.7 GHz)and a near zero TCF~t 1.2 ppm/℃.Moreover,the burying sintering process can reduce the volatilization of lithium so that the porosity of Li_(2)Ti_(0.75)(Mg_(1/3)Nb_(2/3))0.25O_(3)ceramic was reduced effectively,which made Li_(2)Ti_(0.75)(Mg_(1/3)Nb_(2/3))0.25O_(3)ceramic promising for future applications.Selected area electron diffraction patterns,high-resolution transmission electron microscopy,Raman and far-infrared spectra were employed to study the relation between crystal structure and microwave dielectric properties in detail.展开更多
Photocatalysis is an emerging technology that enables a wide variety of applications,including degradation of organics and dyes,antibacterial action,and fuel generation through water splitting and carbon dioxide reduc...Photocatalysis is an emerging technology that enables a wide variety of applications,including degradation of organics and dyes,antibacterial action,and fuel generation through water splitting and carbon dioxide reduction.Numerous inorganic semiconducting materials have been explored as photocatalysts,and the versatility of these materials and reactions has been expanded in recent years.Understanding the relationship between the physicochemical properties of photocatalytic materials and their performances as well as the fundamentals in catalytic processes is important to design and synthesis of photocatalytic materials.展开更多
文摘Demand for power in Malaysia is projected to double the current demand in 2030. The current fuel mix for power generation is heavily dependent on fossil fuels. This has created energy supply and environmental sustainability concerns to the industry. Furthermore, at the recent United Nations Climate Change Conference 2009-15th Conference of Parties (COP15), Malaysia had given the commitment to voluntary reduction of up to 40% in terms of emissions intensity of GDP by the year 2020 compared to 2005 levels. Renewable energy (RE) provides the best alternative in addressing these issues. In 2001, RE was regarded as the fifth fuel in the new Five Fuel Strategy of the National Energy Policy. Small Renewable Energy Program (SREP) was launched with the main objective of supporting the government's strategy to intensify the development of RE as the fifth fuel resource. Biomass, the largest amongst the main RE resources available, can be used for heat and power generation. With optimum utilization, the value ofbiomass resources in Malaysia is estimated to be more than RM 500 billion (USD 156 billion) over the next 20 years. Malaysia has the capacity to use renewable energy resources to address the national energy agenda.
文摘Lignocellulosic materials are promising alternative feedstocks for bioethanol production. However, the recalcitrant nature of lignocellulosic biomass necessitates an efficient pretreatment pretreatment step to improve the yield of fermentable sugars and maximizing the enzymatic hydrolysis efficiency. Microwave pretreatment may be a good alternative as it can reduce the pretreatment time and improve the enzymatic activity during hydrolysis. The overall goal of this paper is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass and microwave assisted enzymatic reaction or Microwave Irradiation-Enzyme Coupling Catalysis (MIECC). In the present study, a comparison of microwave assisted alkali pretreatment was tried using Oil Palm empty fruit bunch. The microwave assisted alkali pretreatment of EFB using NaOH, significantly improved the enzymatic saccharification of EFB by removing more lignin and hemicellulose and increasing its accessibility to hydrolytic enzymes. The results showed that the optimum pretreatment condition was 3% (w/v) NaOH at 180 W for 12 minutes with the optimum component loss of lignin and holocellulose of about 74% and 24.5% respectively. The subsequent enzymatic saccharification of EFB pretreated by microwave assisted NaOH (3% w/v);resulted in 411 mg of reducing sugar per gram EFB at cellulose enzyme dosage of 20 FPU. The overall enhancement by the microwave treatment during the microwave assisted alkali pretreatment and microwave assisted enzymatic hydrolysis was 5.8 fold. The present study has highlighted the importance of well controlled microwave assisted enzymatic reaction to enhance the overall reaction rate of the process.
文摘Agricultural biomass presents a promising feedstock, which may contribute to a transition to low carbon fuels. A significant amount of research has identified a number of challenges when combusting agricultural feedstock, related primarily to energy value, ash, emissions, corrosion and combustion characteristics. The mitigation of such challenges can be addressed more cost effectively when dealing with large or utility scale combustion. The costs associated with harvesting, conversion, transportation and ultimately, market development all create additional roadblocks for the creation of an agricultural biomass industry. Nova Scotia, an Eastern Canadian province, has significant land resources, however it is prone to wet spring and as yet does not have a supply chain established for such an industry. The main components of supply, processing and conversion and demand simply do not yet exist. This research addresses one aspect of this supply chain by attempting to develop a fuel suitable for a) existing markets (local residential wood and wood pellet stoves and b) a scale that will support industry engagement. The outcomes of this research have determined that such a venture is possible and presents empirical preprocessing conditions to achieve a competitive agricultural fuel.
基金The first author gratefully acknowledges the Ministry of Research,Technology,and Higher Education(KEMENRISTEKDIKTI)of Republic Indonesia for the scholarship funding through the Research and Innovation in Science and Technology Project(RISET-Pro)program and also the University of Glasgow for supporting this research.
文摘In this study,a packed bed reactor was developed to investigate the gasification process of coal particles.The effects of coal particle size and heater temperature of reactor were examined to identify the thermochemical processes through the packed bed.Three different coal samples with varying size,named as A,B,and C,are used,and the experimental results show that the packed bed with smaller coal size has higher temperature,reaching 624°C,582°C,and 569°C for coal A,B,and C,respectively.In the case of CO formation,the smaller particle size has greater products in the unit of mole fraction over the area of generation.However,the variation in the porosity of the packed bed due to different coal particle sizes affects the reactions through the oxygen access.Consequently,the CO formation is least from the coal packed bed formed by the smallest particle size A.A second test with the temperature variations shows that the higher heater temperature promotes the chemical reactions,resulting in the increased gas products.The findings indicate the important role of coal seam porosity in underground coal gasification application,as well as temperature to promote the syngas productions.
基金supported by The Swedish Energy AgencyThe Gothenburg Energy Research Foundation,The Goran Gustavsson Research Foundation,Angpanneforeningen’s Foundation for Research and Development,The Olle Engkvist Foundation,The J.Gust.Richert Foundation,CF Environmental Fund,Vargons Research Foundation,The Swedish Research Council grant No.621-2009-3417 and the Wallenius Foundation.
文摘Inside the second experimental wave energy converter (WEC) launched at the Lysekil research site on the Swedish west coast in March 2009 a number of sensor systems were installed for measuring the mechanical performance of the WEC and its mechanical subsystems. One of the measurement systems was a set-up of 7 laser triangulation sensors for measuring relative displacement of the piston rod mechanical lead-through transmission in the direct drive. Two measurement periods, separated by 2.5 month, are presented in this paper. One measurement is made two weeks after launch and another 3 months after launch. Comparisons and correlations are made between different sensors measuring simultaneously. Noise levels are investigated. Filtering is discussed for further refinement of the laser triangulation sensor signals in order to separate noise from actual physical displacement and vibration. Measurements are presented from the relative displacement of the piston rod mechanical lead-through, from magnetic flux in the air gap, mechanical strain in the WEC structure, translator position and piston rod axial displacement and active AC power. Investigation into the measurements in the time domain with close-ups, in the frequency domain with Fast Fourier transform (FFT) and with time-frequency analysis with short time Fourier transform (STFT) is carried out to map the spectral content in the measurements. End stop impact is clearly visible in the time-frequency analysis. The FFT magnitude spectra are investigated for identifying the cogging bandwidth among other vibrations. Generator cogging, fluctuations in the damping force and in the Lorenz forces in the stator are distinguished and varies depending on translator speed. Vibrations from cogging seem to be present in the early measurement period while not so prominent in the late measurement period. Vibration frequencies due to wear are recognized by comparing with the noise at generator standstill and the vibration sources in the generator. It is concluded that a moving average is a sufficient filter in the time domain for further analysis of the relative displacement of the piston rod mechanical lead-through transmission.
基金The Center for Renewable Energies Development (CDER)The General Directorate for Scientific Research and Tech- nological Development (DG-RSDT)+1 种基金The Na- tional Observatory of the Environment and the Durable Development (ONEDD)The Ministry of Town and Country Planning and the Environment
文摘Fuel cell powered vehicles have been developed as another alternative to internal combustion engine powered vehicles for some applications including passenger cars, buses, trains, motorcycles, forklifts, electric wheelchairs, electric trolleybuses, medical carts, military engines, personal sports craft, mobility devices and other self propelled equipment. Up to now, many researches have focused on the development of the power module in the Fuel cell vehicles (FCVs) and the components of these systems such as membranes, bipolar plates, and electrodes. However, our work in this study focuses on operating the integrated fuel cell power module system efficiently for various operating conditions such as pressure, relative humidity and operating modes. In our validation we have utilized PEMFC single cell, with active area geometry 16 cm2 and of 120 cm2. Some results obtained in our study shown significant performance indicators for PEMFC stack (composed of 2 cells and 4 cells in a series) at different humidification levels.
文摘Solar radiation,temperature,and relative humidity,depending on severity,can cause asphalt structural damage besides inducing the Urban Heat Island(UHI)effect.Such damage is more common in countries with extreme weather conditions.The ultimate failure of asphalt pavements under extreme weather conditions causes significant economic losses[1].Apart from weather conditions,pavement thickness,depth and porosity also play a significant role in influencing the functional and mechanical properties of pavement systems.Air-void and pavement microstructures do not have continuous spatial and transient properties.
基金Forestry Tasmaniap,BHP Billiton TEMCO Community FoundationTasmanian Community Fund+1 种基金Centre for Renewable Energy and Power Systems(CREPS)Rainbow Bee Eater Project for their support
文摘The effect of macadamia nut shell biochar on nitrogen,potassium,phosphorus,magnesium,calcium and sodium concentrations in potting mix used to grow Eucalyptus nitens seedlings was investigated in a glasshouse experiment.The treatments combined two fertiliser rates(50 and 100% rate of the commercial mix commonly used in forestry nurseries) with eight biochar rates(0,2,5,10,20,50,80 and 100 t ha;) arranged in a randomised complete block with three replicates of four sample plants.Nutrients were quantified in the potting mix and seedling leaves at four destructive harvests 135,177,219 and269 days after planting.Biochar significantly increased nitrate-N,Colwell P,Colwell K and exchangeable Na andreduced ammonium-N,Mg and Ca concentrations in the potting mix.Seedling leaf concentrations of P,K and Na were increased by biochar application,while N remained dependent on fertiliser rate only.Mg and Ca leaf concentrations decreased in response to increasing biochar rates.Elevated nitrate-N and decreased ammonium-N concentrations suggest that biochar might have increased nitrification in the potting mix.We presumed that biochar mediated processes that reduced uptake of P and K when high doses of biochar were combined with full fertilisation.Changes in potting mix K,Na,Mg and Ca were consistent with selective adsorption of ions to biochar surfaces.
基金supported by the National Natural Science Foundation of China (51672210, 51323011, 51236007)~~
文摘Photocatalytic water oxidation based on semiconductors usually suffers from poor charge transfer from the bulk to the interface,which is necessary for oxygen generation.Here,we construct a hybrid artificial photosynthesis system for photocatalytic water oxidation.The system consists of BiVO4as the light harvester,a transitional metal complex(M(dca)2,M=Co,Ni,dca:dicyanamide)as the water oxidation catalyst,and S2O82?as a sacrificial electron acceptor.The system exhibits enhanced oxygen evolution activity when M(dca)2is introduced.The BiVO4/Co(dca)2and Bi‐VO4/Ni(dca)2systems exhibit excellent oxygen evolution rates of508.1and297.7μmol/(h·g)compared to the pure BiVO4which shows a photocatalytic oxygen evolution rate of252.2μmol/(h·g)during6h of photocatalytic reaction.Co(dca)2is found to be more effective than Ni(dca)2as a water oxidation catalyst.The enhanced photocatalytic performance is ascribed to the M(dca)2‐engineered BiVO4/electrolyte interface energetics,and to the M(dca)2‐catalyzed surface water oxidation.These two factors lead to a decrease in the energy barrier for hole transfer from the bulk to the surface of BiVO4,which promotes the water oxidation kinetics.
基金The Project of Guangxi University Outstanding Post-graduate Student AbroadThe Project of Guangxi University for Youth(2018KY1120,2018KY1121)
文摘The aim of this study is to find an optimal design for a distributed hybrid renewable energy system(HRES) for a residential house in the UK. The hybrid system, which consists of wind turbines, PV arrays, a biodiesel generator, batteries and converters, is designed to meet the known dynamic electrical load of the house and make use of renewable energy resources available locally. Hybrid Optimization Model for Electric Renewables(HOMER) software is used for this study. Different combinations of wind turbines, PV arrays, a biodiesel generator and batteries are evaluated and compared using the NPC(Net Present Cost) method to find the optimal solutions. The HRES is modeled, simulated and optimized using HOMER. The results showed that the wind-biodiesel engine-battery system was the best with the lowest NPC(USD 60254) and the lowest COE(Cost of Energy, USD 0.548/k Wh) while the second best system added PV arrays. This study gives evidence of the key contribution wind turbines make to HRES due to abundant wind resources in the UK, especially in Wales.
文摘The photocatalytic properties of surface TiO2 supported zeolite in a semi batch reactor for the reduction of Cr(VI) in the presence of methyl orange dye were investigated. The prepared composite photocatalyst was characterized by SEM-EDS (scanning electron microscopy and energy dispersive spectroscopy). The effects of operating parameters such as the pH and concentration of Cr(VI) in the absence and presence of dye were evaluated. The Cr(VI) reduction was more efficient in the ternary system (Cr(VI)/dye/TiO2-zeolite) than that of the corresponding binary system (Cr(VI)/TiO2-zeolite). The extent of metal reduction after 210 min of irradiation was 68% at pH = 3 for the ternary system. In order to optimize the effectiveness of the composite photocatalyst on the photocatalytic reduction of Cr(VI), kinetics and isotherm models were applied. The kinetics of Cr(VI) in the presence of dye on TiO2/zeolite composite photocatalyst followed the pseudo-first-order model while the equilibrium data correlated reasonably well with Freundlich isotherm.
文摘Like in other sectors of activity, the sustainability in refrigeration systems is a mandatory goal to achieve, namely at house holdings, bars and restaurants, where small-scale refrigerators and freezers are widely used. The aim of this work is to demonstrate experimentally, trough measurements carried out in these equipments, the improvement that can be achieved if several modifications are implemented in traditional household refrigeration systems. In addition, it was also simulated and analysed experimentally a slightly different equipment, a refrigeration system used for draught beverages. Both systems work on a single vapour compression refrigeration with R-134a as working fluid. In the end, by implemented the modifications tested in the virtual model, it was possible to improve their thermal behaviour, a decrease in electrical energy consumption, as well as, the associated CO2 emissions reduction can be attained. In this project, the CFD (Computational Fluid Dynamics) soffware--ANSYS Fluent was used to simulate the ambient temperature and velocity fields inside the refrigerator and in that way to validate the measured results.
基金Institutional Fund Projects under grant no.(IFPIP:1429-135-1443)。
文摘Hydromagnetic nanoliquid establish an extraordinary category of nanoliquids that unveil both liquid and magnetic attributes.The interest in the utilization of hydromagnetic nanoliquids as a heat transporting medium stem from a likelihood of regulating its flow along with heat transportation process subjected to an externally imposed magnetic field.This analysis reports the hydromagnetic nanoliquid impact on differential type(second-grade)liquid from a convectively heated extending surface.The well-known Darcy-Forchheimer aspect capturing porosity characteristics is introduced for nonlinear analysis.Robin conditions elaborating heat-mass transportation effect are considered.In addition,Ohmic dissipation and suction/injection aspects are also a part of this research.Mathematical analysis is done by implementing the basic relations of fluid mechanics.The modeled physical problem is simplified through order analysis.The resulting systems(partial differential expressions)are rendered to the ordinary ones by utilizing the apposite variables.Convergent solutions are constructed employing homotopy algorithm.Pictorial and numeric result are addressed comprehensively to elaborate the nature of sundry parameters against physical quantities.The velocity profile is suppressed with increasing Hartmann number(magnetic parameter)whereas it is enhanced with increment in material parameter(second-grade).With the elevation in thermophoresis parameter,temperature and concentration of nanoparticles are accelerated.
文摘Efforts towards achieving high access to cooking with clean energy have not been transformative due to a limited understanding of the clean-energy drivers and a lack of evidence-based clean-energy policy recommendations.This study addresses this gap by building a high-performing machine learning model to predict and understand the mechanisms driving energy poverty-specifically access to cooking with clean energy.In a first-of-a-kind,the estimated cost of US$14.5 trillion to enable universal access to cooking with clean energy encompasses all the intermediate inputs required to build self-sufficient ecosystems by creating value-addition sectors.Unlike pre-vious studies,the data-driven clean-cooking transition pathways provide foundations for shaping policy and building energy models that can transform the complex energy and cooking landscape.Developing these path-ways is necessary to increase people’s financial resilience to tackle energy poverty.The findings also show the absence of a linear relationship between electricity access and clean cooking-evidencing the need for a rapid paradigm shift to address energy poverty.A new fundamental approach that focuses on improving and sustaining the financial capacity of households through a systems approach is required so that they can afford electricity or fuels for cooking.
基金The authors gratefully acknowledge the financial supports form the National Natural Science Foundation of China(No.51672210,No.51323011,No.51236007)the Natural Science Foundation of Shaanxi Province(2014KW07-02)+4 种基金the Program for New Century Excellent Talents in University(NCET-13-0455)the Nano Research Program of Suzhou City(ZXG201442)the Natural Science Foundation of Jiangsu Province(BK 20141212)S.Shen was supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China(No.201335)the National Program for Support of Top-notch Young Professionals,and the Fundamental Research Funds for the Central Universities.S.S.Mao acknowledges the support from the Shenzhen Peacock Plan(No.1208040050847074).
文摘Titanium dioxide(TiO_(2))has been widely investigated for photocatalytic H_(2) evolution and photoelectrochemical(PEC)water splitting since 1972.However,its wide bandgap(3.0-3.2 eV)limits the optical absorption of TiO_(2) for sufficient utilization of solar energy.Blackening TiO_(2) has been proposed as an effective strategy to enhance its solar absorption and thus the photocatalytic and PEC activities,and aroused widespread research interest.In this article,we reviewed the recent progress of black TiO_(2) for photocatalytic H_(2) evolution and PEC water splitting,along with detailed introduction to its unique structural features,optical property,charge carrier transfer property and related theoretical calculations.As summarized in this review article,black TiO_(2) could be a promising candidate for photoelectrocatalytic hydrogen generation via water splitting,and continuous efforts are deserved for improving its solar hydrogen efficiency.
基金The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Nos. 51102194, 51323011, and 51121092), the Doctoral Program of the Ministry of Education (No. 20110201120040) and the Nano Research Program of Suzhou City (ZXG2013003). S. Shen is supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (No. 201335) and the Fundamental Research Funds for the Central Universities.
文摘Utilization of visible light is of crucial importance for exploiting efficient semiconductor catalysts for solar water splitting. In this study, an advanced ion implantation method was utilized to dope Cu ions into ZnO nanorod arrays for photoelectrochemical water splitting in visible light. X-ray diffraction (XRD) and X-ray photo-electron spectroscopy (XPS) results revealed that Cu^+ together with a small amount of Cu^2+ were highly dispersed within the ZnO nanorod arrays. The Cu ion doped ZnO nanorod arrays displayed extended optical absorption and enhanced photoelectrochemical performance under visible light illumination (A 〉 420 nm). A considerable photocurrent density of 18 μA/cm^2 at 0.8 V (vs. a saturated calomel electrode) was achieved, which was about 11 times higher than that of undoped ZnO nanorod arrays. This study proposes that ion implantation could be an effective approach for developing novel visible-light-driven photocatalytic materials for water splitting.
基金supported by the National Key Research and Development Program of China(2017YFB0406301)the State Key Laboratory of Electrical Insulation and Power Equipment(EIPE19210)+1 种基金the 111 Project of China(B14040)the Fundamental Research Funds for the Central University。
文摘The rise of personalized flexible electronics has promoted the rapid development of flexible supercapacitors due to their long service life,fast charging-discharging rates and safe operation.Different from the traditional flexible supercapacitors,the all-in-one integrated flexible supercapacitors are more resistant to deformation and lower interface resistance,which have a broader application prospect in the field of flexible electronics.This review briefly summarizes the preparation methods and electrochemical properties of some typical all-in-one supercapacitors,represented by planar and fibrous structures in recent years.Firstly,the basic understanding of traditional flexible supercapacitors and all-in-one integrated flexible supercapacitors,and the key parameters of the performance of flexible supercapacitors are introduced.Subsequently,the hydrogel matrix all-in-one supercapacitors with different functional characteristics(stretchable,self-healing and compressible)and the nonhydrogel matrix(separator,flexible membrane)all-in-one supercapacitors are discussed.Furthermore,the challenges and future development of flexible supercapacitors are considered.
文摘This paper presents a literature review on the recent research progress in liquid desiccant dehumidification and air conditioning systems.The physical features of various liquid desiccant materials and their dehumidification performances have been summarized.With the aim to improve the dehumidification characteristics,mixed sol-vents desiccants have become research hot topics recently.Various types of dehumidifiers and their integration with liquid desiccant dehumidification system have been reviewed.The combination of liquid desiccant dehumid-ification system with solar collector,vapour compression system,heat pump system,CHP system,etc.have been grouped and compared.It is shown that the majority of the recent research work for liquid desiccant dehumid-ification systems has concentrated on numerical simulations,a considerable amount of works are still required for the practical investigations of innovative material(mixed solvents)and hybrid systems.
基金the National Key Research and Development Program of China(2017YFB0406301)the Young Star Project of Science and Technology of Shaanxi Province(2016KJXX-34)+1 种基金the Fundamental Research Funds for the Central University,and the 111 Project of China(B14040)The SEM and TEM work was done at the International Center for Dielectric Research(ICDR),Xi'an Jiaotong University,Xi'an,China and the authors thank Ms.Yan-Zhu Dai and Mr Chuan-Sheng Ma for their help in using SEM and TEM.
文摘A systematic investigation of the Li2Ti1-x(Mg_(1/3)Nb_(2/3))xO_(3)(0.1≤x≤0.35)solid solutions synthesized by traditional solid-state reaction method is reported in this work.In the composition range of 0.1≤x≤0.25,a monoclinic rock salt structured solid solution was formed.When x increased to 0.3,a phase transition from monoclinic to cubic phase,along with an order-disorder phase transition,was observed.With x increased from 0.1 to 0.35,the microwave permittivity(εr)and temperature coefficient of resonant frequency(TCF)of the Li2Ti1-x(Mg_(1/3)Nb_(2/3))xO_(3)ceramics decreased linearly from 21.0 to 18.6,+27.1 to-19.4 ppm/℃,respectively.The Li_(2)Ti_(0.75)(Mg_(1/3)Nb_(2/3))0.25O_(3)ceramic sintered at 1170℃shows high performance of microwave dielectric properties with aεr~19.6,a Qf(Q=quality factor=1/dielectric loss;f=resonant frequency)~109,770 GHz(at 7.7 GHz)and a near zero TCF~t 1.2 ppm/℃.Moreover,the burying sintering process can reduce the volatilization of lithium so that the porosity of Li_(2)Ti_(0.75)(Mg_(1/3)Nb_(2/3))0.25O_(3)ceramic was reduced effectively,which made Li_(2)Ti_(0.75)(Mg_(1/3)Nb_(2/3))0.25O_(3)ceramic promising for future applications.Selected area electron diffraction patterns,high-resolution transmission electron microscopy,Raman and far-infrared spectra were employed to study the relation between crystal structure and microwave dielectric properties in detail.
文摘Photocatalysis is an emerging technology that enables a wide variety of applications,including degradation of organics and dyes,antibacterial action,and fuel generation through water splitting and carbon dioxide reduction.Numerous inorganic semiconducting materials have been explored as photocatalysts,and the versatility of these materials and reactions has been expanded in recent years.Understanding the relationship between the physicochemical properties of photocatalytic materials and their performances as well as the fundamentals in catalytic processes is important to design and synthesis of photocatalytic materials.