Constructing charge transfer(CT)state by introducing donor(D)and acceptor(A)is an efficient strategy to regulate the photophysical properties of luminescent materials.Traditional CT-type luminophores are built onπ-co...Constructing charge transfer(CT)state by introducing donor(D)and acceptor(A)is an efficient strategy to regulate the photophysical properties of luminescent materials.Traditional CT-type luminophores are built onπ-conjugated fused-ring structures,which always show hybrid CT/locally excited(LE)states and luminescence quenching effect in the aggregate state.In this work,eight conjugated biphenyl(BP)and nonconjugated diphenylmethane(DPM)derivatives with different donors and acceptors are synthesized to investigate the CT properties.Systematic photophysical characterization and theoretical calculation demonstrate that the through-space CT(TSCT)in nonconjugated DA-DPM exhibit superior photophysical performance than the conjugated DA-BP with through-bond CT(TBCT),the main manifestations are as follows:(1)TSCT luminophores produce longer maximum emission wavelength(λ_(em))than the corresponding TBCT ones.For example,the longest λ_(em)of DMA-CN-DPM(DMA,dimethylamino)is 621 nm but the corresponding λ_(em)of DMA-CN-BP is only 480 nm.(2)TSCT-based DA-DPM demonstrates more sensitive responsiveness to environmental stimuli such as temperature and polarity.(3)Complete separation of the the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)distribution exists in all kinds of conformation of DA-DPM,which was hard to realize in conjugated DA-BP.展开更多
Nonconjugated clusteroluminogens(CLgens),such as proteins and polystyrene,have become increasingly important in photophysics.They show many advantages over traditional conjugated dyes with fused aromatic rings in biol...Nonconjugated clusteroluminogens(CLgens),such as proteins and polystyrene,have become increasingly important in photophysics.They show many advantages over traditional conjugated dyes with fused aromatic rings in biological applications.However,CLgens have historically been unheeded because of their weak visible emissions in the aggregate state,namely clusteroluminescence(CL).Changing the electronic structures of CLgens by precisely regulating the intramolecular throughspace interaction(TSI)to improve their photophysical properties remains an enormous challenge.Herein,we propose a general strategy to construct a higher-level intramolecular TSI,namely secondary TSI constructed by the primary TSI and a TSI linker,in multi-aryl-substituted alkanes(MAAs).By introducing methyl and phenyl into 1,1,3,3-tetraphenylpropane,the modified MAAs show efficient CL with high luminescence quantum yield(-40%)and long emission wavelength(-530 nm).Then,comprehensive experiments and theoretical studies demonstrate that molecular rigidity and overlap of subunits play pivotal roles in improving these hierarchical TSIs.This work not only provides a feasible strategy to achieve controllable manipulation of hierarchical TSIs and CL but also establishes comprehensive TSI-based aggregate photophysics.展开更多
基金supported by the National Natural Science Foundation of China(22205197)the project funded by China Postdoctoral Science Foundation(2022M712721)。
文摘Constructing charge transfer(CT)state by introducing donor(D)and acceptor(A)is an efficient strategy to regulate the photophysical properties of luminescent materials.Traditional CT-type luminophores are built onπ-conjugated fused-ring structures,which always show hybrid CT/locally excited(LE)states and luminescence quenching effect in the aggregate state.In this work,eight conjugated biphenyl(BP)and nonconjugated diphenylmethane(DPM)derivatives with different donors and acceptors are synthesized to investigate the CT properties.Systematic photophysical characterization and theoretical calculation demonstrate that the through-space CT(TSCT)in nonconjugated DA-DPM exhibit superior photophysical performance than the conjugated DA-BP with through-bond CT(TBCT),the main manifestations are as follows:(1)TSCT luminophores produce longer maximum emission wavelength(λ_(em))than the corresponding TBCT ones.For example,the longest λ_(em)of DMA-CN-DPM(DMA,dimethylamino)is 621 nm but the corresponding λ_(em)of DMA-CN-BP is only 480 nm.(2)TSCT-based DA-DPM demonstrates more sensitive responsiveness to environmental stimuli such as temperature and polarity.(3)Complete separation of the the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)distribution exists in all kinds of conformation of DA-DPM,which was hard to realize in conjugated DA-BP.
基金the National Science Foundation of China(grant no.22205197)the project funded by China Postdoctoral Science Foundation(grant no.2022M712721)the Youth Talent Excellence Program of ZJU-Hangzhou Global Scientific and Technological Innovation Center for their financial support.
文摘Nonconjugated clusteroluminogens(CLgens),such as proteins and polystyrene,have become increasingly important in photophysics.They show many advantages over traditional conjugated dyes with fused aromatic rings in biological applications.However,CLgens have historically been unheeded because of their weak visible emissions in the aggregate state,namely clusteroluminescence(CL).Changing the electronic structures of CLgens by precisely regulating the intramolecular throughspace interaction(TSI)to improve their photophysical properties remains an enormous challenge.Herein,we propose a general strategy to construct a higher-level intramolecular TSI,namely secondary TSI constructed by the primary TSI and a TSI linker,in multi-aryl-substituted alkanes(MAAs).By introducing methyl and phenyl into 1,1,3,3-tetraphenylpropane,the modified MAAs show efficient CL with high luminescence quantum yield(-40%)and long emission wavelength(-530 nm).Then,comprehensive experiments and theoretical studies demonstrate that molecular rigidity and overlap of subunits play pivotal roles in improving these hierarchical TSIs.This work not only provides a feasible strategy to achieve controllable manipulation of hierarchical TSIs and CL but also establishes comprehensive TSI-based aggregate photophysics.