Bioimplants are becoming increasingly impor-tant in the modem society due to the fact of an agingpopulation and associated issues of osteoporosis andosteoarthritis. The manufacturing of bioimplants involvesan understa...Bioimplants are becoming increasingly impor-tant in the modem society due to the fact of an agingpopulation and associated issues of osteoporosis andosteoarthritis. The manufacturing of bioimplants involvesan understanding of both mechanical engineering andbiomedical science to produce biocompatible products withadequate lifespans. A suitable selection of materials is theprerequisite for a long-term and reliable service of thebioimplants, which relies highly on the comprehensiveunderstanding of the material properties. In this paper,most biomaterials used for bioimplants are reviewed. Thetypical manufacturing processes are discussed in order toprovide a perspective on the development of manufacturingfundamentals and latest technologies. The review alsocontains a discussion on the current measurement andevaluation constraints of the finished bioimplant products.Potential future research areas are presented at the end ofthis paper.展开更多
Injection moulding has shown its advantages and prevalence in the production of plastic optical components,the performance and functionality of which rely on the precision replication of surface forms and on minimizin...Injection moulding has shown its advantages and prevalence in the production of plastic optical components,the performance and functionality of which rely on the precision replication of surface forms and on minimizing residual stress.The present work constitutes a systematic and comprehensive analysis of practical microlens arrays that are designed for light-field applications.Process parameters are screened and optimized using a two-stage design of experiments approach.Based on in-line process monitoring and a quantitative and qualitative evaluation being carried out in terms of geometric accuracy,surface quality and stress birefringence,the replication is shown to relate directly to machine settings and dynamic machine responses.The geometric accuracy and stress birefringence are both largely associated with screw displacement and peak cavity pressure during the packing stage,while surface quality is closely related to cavity temperature.This study provides important insights and recommendations regarding the overall replication quality of microlens arrays,while advanced injection moulding solutions may be necessary to further improve the general replication quality.展开更多
文摘Bioimplants are becoming increasingly impor-tant in the modem society due to the fact of an agingpopulation and associated issues of osteoporosis andosteoarthritis. The manufacturing of bioimplants involvesan understanding of both mechanical engineering andbiomedical science to produce biocompatible products withadequate lifespans. A suitable selection of materials is theprerequisite for a long-term and reliable service of thebioimplants, which relies highly on the comprehensiveunderstanding of the material properties. In this paper,most biomaterials used for bioimplants are reviewed. Thetypical manufacturing processes are discussed in order toprovide a perspective on the development of manufacturingfundamentals and latest technologies. The review alsocontains a discussion on the current measurement andevaluation constraints of the finished bioimplant products.Potential future research areas are presented at the end ofthis paper.
基金The support from the National Key Research&Development Program(Grant No.2016YFB1102203)the China Scholarship Council,the National Natural Science Foundation of China(Grant No.61675149)Science Foundation Ireland(Grant No.15/RP/B3208)is gratefully acknowledged.
文摘Injection moulding has shown its advantages and prevalence in the production of plastic optical components,the performance and functionality of which rely on the precision replication of surface forms and on minimizing residual stress.The present work constitutes a systematic and comprehensive analysis of practical microlens arrays that are designed for light-field applications.Process parameters are screened and optimized using a two-stage design of experiments approach.Based on in-line process monitoring and a quantitative and qualitative evaluation being carried out in terms of geometric accuracy,surface quality and stress birefringence,the replication is shown to relate directly to machine settings and dynamic machine responses.The geometric accuracy and stress birefringence are both largely associated with screw displacement and peak cavity pressure during the packing stage,while surface quality is closely related to cavity temperature.This study provides important insights and recommendations regarding the overall replication quality of microlens arrays,while advanced injection moulding solutions may be necessary to further improve the general replication quality.