A simple and fast method to calculate the coil currents and the external poloidal flux and magnetic field consistent with a given internal magnetohydrodynamic(MHD) equilibrium and coil geometry is presented. The const...A simple and fast method to calculate the coil currents and the external poloidal flux and magnetic field consistent with a given internal magnetohydrodynamic(MHD) equilibrium and coil geometry is presented. The constrained optimization technique employed allows to fix the exact position of the X-points. The external poloidal flux and field are calculated using Green's functions expressed in terms of elliptic integrals that are calculated using a fast and accurate routine.The calculation can be limited to the region between the plasma and the device wall. An example for a double null configuration is presented.展开更多
We extend a recently proposed Quantum Field Theory (QFT) approach to the Lifshitz formula, originally implemented for a real scalar field, to the case of a fluctuating vacuum Electromagnetic (EM) field, coupled to two...We extend a recently proposed Quantum Field Theory (QFT) approach to the Lifshitz formula, originally implemented for a real scalar field, to the case of a fluctuating vacuum Electromagnetic (EM) field, coupled to two flat, parallel mirrors. The general result is presented in terms of the invariants of the vacuum polarization tensors due to the media on each mirror. We consider mirrors that have small widths, with the zero-width limit as a particular case. We apply the latter to models involving graphene sheets, obtaining results which are consistent with previous ones.展开更多
Ligands present in dissolved organic matter (DOM) form complexes with inorganic divalent mercury (Hg^2+) affecting its bioavailability in pelagic food webs. This investigation addresses the influence of a natural...Ligands present in dissolved organic matter (DOM) form complexes with inorganic divalent mercury (Hg^2+) affecting its bioavailability in pelagic food webs. This investigation addresses the influence of a natural gradient of DOM present in Patagonian lakes on the bioaccumulation of Hg^2+ (the prevailing mercury species in the water column of these lakes) by the algae Cryptomonas erosa and the zooplankters Brachionus calyciflorus and Boeckella antiqua. Hg^2+ accumulation was studied through laboratory experiments using natural water of four oligotrophic Patagonian lakes amended with^197Hg^2+. The bioavailability of Hg^2+ was affected by the concentration and character of DOM. The entrance of Hg^2+ into pelagic food webs occurs mostly through passive and active accumulation. The incorporation of Hg^2+ by Cryptomonas, up to 27% of the Hg^2+ amended, was found to be rapid and dominated by passive adsorption, and was greatest when low molecular weight compounds with protein-like or small phenolic signatures prevailed in the DOM. Conversely, high molecular weight compounds with a humic or fulvic signature kept Hg^2+ in the dissolved phase, resulting in the lowest Hg^2+ accumulation in this algae. In Brachionus and Boeckella the direct incorporation of Hg from the aqueous phase was up to 3% of the Hg^2+ amended. The dietary incorporation of Hg^2+ by Boeckella exceeded the direct absorption of this metal in natural water, and was remarkably similar to the Hg^2+ adsorbed in their prey. Overall, DOM concentration and character affected the adsorption of Hg^2+ by algae through competitive binding, while the incorporation of Hg^2+ into the zooplankton was dominated by trophic or dietary transfer.展开更多
基金supported by the Comisión Nacional de Energía Atómica, CNEA (Controlled Nuclear Fusion Program)CONICET (Grant PIP 11220200101929CO)。
文摘A simple and fast method to calculate the coil currents and the external poloidal flux and magnetic field consistent with a given internal magnetohydrodynamic(MHD) equilibrium and coil geometry is presented. The constrained optimization technique employed allows to fix the exact position of the X-points. The external poloidal flux and field are calculated using Green's functions expressed in terms of elliptic integrals that are calculated using a fast and accurate routine.The calculation can be limited to the region between the plasma and the device wall. An example for a double null configuration is presented.
文摘We extend a recently proposed Quantum Field Theory (QFT) approach to the Lifshitz formula, originally implemented for a real scalar field, to the case of a fluctuating vacuum Electromagnetic (EM) field, coupled to two flat, parallel mirrors. The general result is presented in terms of the invariants of the vacuum polarization tensors due to the media on each mirror. We consider mirrors that have small widths, with the zero-width limit as a particular case. We apply the latter to models involving graphene sheets, obtaining results which are consistent with previous ones.
基金funded by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT PICT 200700393)Consejo Nacional de Investigaciones Científicas y Tcnicas(CONICET PIP 11220100100064)+1 种基金International Atomic Energy Agency(IAEA TCP ARG7007)Universidad Nacional del Comahue(Program 04-B166)
文摘Ligands present in dissolved organic matter (DOM) form complexes with inorganic divalent mercury (Hg^2+) affecting its bioavailability in pelagic food webs. This investigation addresses the influence of a natural gradient of DOM present in Patagonian lakes on the bioaccumulation of Hg^2+ (the prevailing mercury species in the water column of these lakes) by the algae Cryptomonas erosa and the zooplankters Brachionus calyciflorus and Boeckella antiqua. Hg^2+ accumulation was studied through laboratory experiments using natural water of four oligotrophic Patagonian lakes amended with^197Hg^2+. The bioavailability of Hg^2+ was affected by the concentration and character of DOM. The entrance of Hg^2+ into pelagic food webs occurs mostly through passive and active accumulation. The incorporation of Hg^2+ by Cryptomonas, up to 27% of the Hg^2+ amended, was found to be rapid and dominated by passive adsorption, and was greatest when low molecular weight compounds with protein-like or small phenolic signatures prevailed in the DOM. Conversely, high molecular weight compounds with a humic or fulvic signature kept Hg^2+ in the dissolved phase, resulting in the lowest Hg^2+ accumulation in this algae. In Brachionus and Boeckella the direct incorporation of Hg from the aqueous phase was up to 3% of the Hg^2+ amended. The dietary incorporation of Hg^2+ by Boeckella exceeded the direct absorption of this metal in natural water, and was remarkably similar to the Hg^2+ adsorbed in their prey. Overall, DOM concentration and character affected the adsorption of Hg^2+ by algae through competitive binding, while the incorporation of Hg^2+ into the zooplankton was dominated by trophic or dietary transfer.