Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV...Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.展开更多
This work presents the feasibility of reusing a glass fiber resulting from the thermolysis and gasification of waste composites to obtain glass-ceramic tiles. Polyester fiberglass (PFG) waste was treated at 550℃ for ...This work presents the feasibility of reusing a glass fiber resulting from the thermolysis and gasification of waste composites to obtain glass-ceramic tiles. Polyester fiberglass (PFG) waste was treated at 550℃ for 3 h in a 9.6 dm3 thermolytic reactor. This process yielded an oil (≈24 wt%), a gas (≈8 wt%) and a solid residue (≈68 wt%). After the polymer has been removed, the solid residue is heated in air to oxidize residual char and remove surface contamination. The cleaning fibers were converted into glass-ceramic tile. A mixture consisting of 95 wt% of this solid residue and 5% Na2O was melted at 1450℃ to obtain a glass frit. Powder glass samples (<63 μm) was then sintered and crystallized at 1013℃, leading to the formation of wollastonite-plagioclase glass-ceramic materials for architectural applications. Thermal stability and crystallization mechanism have been studied by Differential Thermal Analysis. Mineralogy analyses of the glass-ceramic materials were carried out using X-ray Diffraction.展开更多
Phosphogypsum (PG), primary by-product from phosphoric acid production, is accumulated in large stock-piles which were active until 2010, when spills were banned. It is considered as NORM material that contains radion...Phosphogypsum (PG), primary by-product from phosphoric acid production, is accumulated in large stock-piles which were active until 2010, when spills were banned. It is considered as NORM material that contains radionuclides from 238U and decay series which are of most radiotoxicity. PG was valorized and/or recycled in a building material, sulfur polymer cement (SPC). The SPC-PG samples reach the international regulation to use in the manufacture of building materials without radiological restrictions, except the sample with the 50% of PG. Under normal conditions of ventilation the contribution to the expected radon indoor concentration is also below the international recommendation.展开更多
A multiscale methodology using scanning and transmission electron microscope,synchrotron X-ray nano-tomography and micro-tomography,small angle neutron scattering,and in situ synchrotron X-ray diffrac-tion has been us...A multiscale methodology using scanning and transmission electron microscope,synchrotron X-ray nano-tomography and micro-tomography,small angle neutron scattering,and in situ synchrotron X-ray diffrac-tion has been used,to reveal the effect of Fe-rich phases and precipitates on the mechanical behaviour of an Al-Cu-Mn-Fe-Sc-Zr alloy.Theα-Al grains size is reduced from 185.1μm(0 MPa)and 114.3μm(75 MPa)by applied pressure.Moreover,it has been demonstrated that suitable heat treatments modify the 3D morphology of Fe-rich phases from interconnected to a disaggregated structure that improves the mechanical properties of the alloy.The size and morphology evolution of fine precipitates under differ-ent ageing temperature and time are revealed.At ageing temperature of 160℃,the precipitates change from GP zones toθ’(around 75 nm in length)with ageing time increasing from 1 h to 24 h;the Vick-ers hardness increases from 72.0 HV to 110.7HV.The high ductility of the Sc,Zr modified Al-Cu alloy is related to the complex shape and the loss of interconnectivity of the Fe-rich particles due to the heat treatment.The evolution of the crystal lattice strains inα-Al,andβ-Fe calculated during tensile test us-ing in-situ synchrotron X-ray diffraction corroborates the influence of the microstructure in the ductility of the modified alloy.展开更多
基金the National Natural Science Foundation of China(No.52265043)Science and Technology Plan,Guizhou Province,China(No.ZK2021(267))+2 种基金Technology Achievements Application and Industrialization Project,Guizhou Province,China(No.2021(067))Cultivation Project of Guizhou University,China(No.2019(23))Lastly,we thank the Shanghai Synchrotron Radiation Facility(SSRF)for providing the synchrotron radiation beamtime.
文摘Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.
文摘This work presents the feasibility of reusing a glass fiber resulting from the thermolysis and gasification of waste composites to obtain glass-ceramic tiles. Polyester fiberglass (PFG) waste was treated at 550℃ for 3 h in a 9.6 dm3 thermolytic reactor. This process yielded an oil (≈24 wt%), a gas (≈8 wt%) and a solid residue (≈68 wt%). After the polymer has been removed, the solid residue is heated in air to oxidize residual char and remove surface contamination. The cleaning fibers were converted into glass-ceramic tile. A mixture consisting of 95 wt% of this solid residue and 5% Na2O was melted at 1450℃ to obtain a glass frit. Powder glass samples (<63 μm) was then sintered and crystallized at 1013℃, leading to the formation of wollastonite-plagioclase glass-ceramic materials for architectural applications. Thermal stability and crystallization mechanism have been studied by Differential Thermal Analysis. Mineralogy analyses of the glass-ceramic materials were carried out using X-ray Diffraction.
文摘Phosphogypsum (PG), primary by-product from phosphoric acid production, is accumulated in large stock-piles which were active until 2010, when spills were banned. It is considered as NORM material that contains radionuclides from 238U and decay series which are of most radiotoxicity. PG was valorized and/or recycled in a building material, sulfur polymer cement (SPC). The SPC-PG samples reach the international regulation to use in the manufacture of building materials without radiological restrictions, except the sample with the 50% of PG. Under normal conditions of ventilation the contribution to the expected radon indoor concentration is also below the international recommendation.
基金financially supported by the Natural Science Foundation of China(Nos.52104373 and 51901042)the Ba-sic and Applied Basic Foundation of Guangdong Province,China(Nos.2020B1515120065 and 2021B1515140028)the Guangdong Province Office of Education,China(No.2018KQNCX256).
文摘A multiscale methodology using scanning and transmission electron microscope,synchrotron X-ray nano-tomography and micro-tomography,small angle neutron scattering,and in situ synchrotron X-ray diffrac-tion has been used,to reveal the effect of Fe-rich phases and precipitates on the mechanical behaviour of an Al-Cu-Mn-Fe-Sc-Zr alloy.Theα-Al grains size is reduced from 185.1μm(0 MPa)and 114.3μm(75 MPa)by applied pressure.Moreover,it has been demonstrated that suitable heat treatments modify the 3D morphology of Fe-rich phases from interconnected to a disaggregated structure that improves the mechanical properties of the alloy.The size and morphology evolution of fine precipitates under differ-ent ageing temperature and time are revealed.At ageing temperature of 160℃,the precipitates change from GP zones toθ’(around 75 nm in length)with ageing time increasing from 1 h to 24 h;the Vick-ers hardness increases from 72.0 HV to 110.7HV.The high ductility of the Sc,Zr modified Al-Cu alloy is related to the complex shape and the loss of interconnectivity of the Fe-rich particles due to the heat treatment.The evolution of the crystal lattice strains inα-Al,andβ-Fe calculated during tensile test us-ing in-situ synchrotron X-ray diffraction corroborates the influence of the microstructure in the ductility of the modified alloy.