The experimental data concerning the58Ni+48Ca reaction at Elab(Ni)=25A MeV,collected by using the CHIMERA 4π device,have been analyzed in order to investigate the competition among different reaction mechanisms for c...The experimental data concerning the58Ni+48Ca reaction at Elab(Ni)=25A MeV,collected by using the CHIMERA 4π device,have been analyzed in order to investigate the competition among different reaction mechanisms for central collisions in the Fermi energy domain.As a main criterion for centrality selection we have chosen the flow angle(flow) method,making an event-by-event analysis that considers the shape of events,as it is determined by the eigenvectors of the experimental kinetic-energy tensor.For the selected central events(flow >60°) some global variables,good to characterize the pattern of central collisions have been constructed.The main features of the reaction products were explored by using different constraints on some of the relevant observables,like mass and velocity distributions and their correlations.Much emphasis was devoted,for central collisions,to the competition between fusion-evaporation processes with subsequent identification of a heavy residue and a possible multifragmentation mechanism of a well defined(if any) transient nuclear system.Dynamical evolution of the system and pre-equilibrium emission were taken into account by simulating the reactions in the framework of transport theories.Different approaches have been envisaged(dynamical stochastic BNV calculations + sequential SIMON code,QMD,CoMD,etc.).Preliminary comparison of the experimental data with BNV calculations shows reasonable agreement with the assumption of sequential multifragmentation emission in the mass region of IMFs close to the heavy residues.Possible deviations from sequential processes were found for those IMFs in the region of masses intermediate between the mass of heavy residues and the mass of light IMFs.Further simulations are in progress.The experimental analysis will be enriched also by information obtained inspecting the IMF-IMF correlation function,in order to elucidated the nature of space-time decay property of the emitting source associated with events having the largest IMF multiplicity.展开更多
We discuss a hardship in synthesis of heaviest super heavy elements in massive nuclei reactions due to the hindrance to complete fusion of reacting nuclei caused on the onset of quasifission process which strongly com...We discuss a hardship in synthesis of heaviest super heavy elements in massive nuclei reactions due to the hindrance to complete fusion of reacting nuclei caused on the onset of quasifission process which strongly competes with complete fusion and due to the strong increase of fission yields along the de-excitation cascade of the compound nucleus in comparison with the evaporation residue formation.The hindrance to formation of compound nucleus and evaporation residue is determined by the characteristic of the entrance channel.展开更多
The Jiangmen Underground Neutrino Observatory(JUNO)features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector.Some of JUNO's features make it an excellent location for^8B solar neut...The Jiangmen Underground Neutrino Observatory(JUNO)features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector.Some of JUNO's features make it an excellent location for^8B solar neutrino measurements,such as its low-energy threshold,high energy resolution compared with water Cherenkov detectors,and much larger target mass compared with previous liquid scintillator detectors.In this paper,we present a comprehensive assessment of JUNO's potential for detecting^8B solar neutrinos via the neutrino-electron elastic scattering process.A reduced 2 MeV threshold for the recoil electron energy is found to be achievable,assuming that the intrinsic radioactive background^(238)U and^(232)Th in the liquid scintillator can be controlled to 10^(-17)g/g.With ten years of data acquisition,approximately 60,000 signal and 30,000 background events are expected.This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter,which will shed new light on the inconsistency between the measured electron spectra and the predictions of the standard three-flavor neutrino oscillation framework.IfDelta m^(2)_(21)=4.8times10^(-5);(7.5times10^(-5))eV^(2),JUNO can provide evidence of neutrino oscillation in the Earth at approximately the 3sigma(2sigma)level by measuring the non-zero signal rate variation with respect to the solar zenith angle.Moreover,JUNO can simultaneously measureDelta m^2_(21)using^8B solar neutrinos to a precision of 20% or better,depending on the central value,and to sub-percent precision using reactor antineutrinos.A comparison of these two measurements from the same detector will help understand the current mild inconsistency between the value of Delta m^2_(21)reported by solar neutrino experiments and the KamLAND experiment.展开更多
文摘The experimental data concerning the58Ni+48Ca reaction at Elab(Ni)=25A MeV,collected by using the CHIMERA 4π device,have been analyzed in order to investigate the competition among different reaction mechanisms for central collisions in the Fermi energy domain.As a main criterion for centrality selection we have chosen the flow angle(flow) method,making an event-by-event analysis that considers the shape of events,as it is determined by the eigenvectors of the experimental kinetic-energy tensor.For the selected central events(flow >60°) some global variables,good to characterize the pattern of central collisions have been constructed.The main features of the reaction products were explored by using different constraints on some of the relevant observables,like mass and velocity distributions and their correlations.Much emphasis was devoted,for central collisions,to the competition between fusion-evaporation processes with subsequent identification of a heavy residue and a possible multifragmentation mechanism of a well defined(if any) transient nuclear system.Dynamical evolution of the system and pre-equilibrium emission were taken into account by simulating the reactions in the framework of transport theories.Different approaches have been envisaged(dynamical stochastic BNV calculations + sequential SIMON code,QMD,CoMD,etc.).Preliminary comparison of the experimental data with BNV calculations shows reasonable agreement with the assumption of sequential multifragmentation emission in the mass region of IMFs close to the heavy residues.Possible deviations from sequential processes were found for those IMFs in the region of masses intermediate between the mass of heavy residues and the mass of light IMFs.Further simulations are in progress.The experimental analysis will be enriched also by information obtained inspecting the IMF-IMF correlation function,in order to elucidated the nature of space-time decay property of the emitting source associated with events having the largest IMF multiplicity.
文摘We discuss a hardship in synthesis of heaviest super heavy elements in massive nuclei reactions due to the hindrance to complete fusion of reacting nuclei caused on the onset of quasifission process which strongly competes with complete fusion and due to the strong increase of fission yields along the de-excitation cascade of the compound nucleus in comparison with the evaporation residue formation.The hindrance to formation of compound nucleus and evaporation residue is determined by the characteristic of the entrance channel.
基金This work was supported by the Chinese Academy of Sciences,the National Key R&D Program of China,the CAS Center for Excellence in Particle Physics,the Joint Large Scale Scientific Facility Funds of the NSFC and CAS,Wuyi University,and the Tsung-Dao Lee Instiute of Shanghai Jiao Tong University in China,the In stiut National de Physique Nucleaire et de Physique de Particules(IN2P3)in France,the Istituto Nazionale di Fisica Nucleare(INFN)in Italy,the Fond de la Recherche Scintifique(F.R.S-FNRS)and FWO under the"Excellence of Science-EOS"in Belgium,the Conselho Nacional de Desenvolvimento Cientificoce Tecnologico in Brazil,the Agencia Nacional de Investigacion y Desrrollo in Chile,the Charles University Research Centre and the Ministry of Education,Youth,and Sports in Czech Republic,the Deutsche Forschungsgemeinschaft(DFG),the Helmholtz Association,and the Cluster of Exellence PRISMA+in Germany,the Joint Institute of Nuclear Research(JINR),Lomonosov Moscow State University,and Russian Foundation for Basic Research(RFBR)in Russia,the MOST and MOE in Taiwan,the Chu-lalongkorm University and Suranaree University of Technology in Thailand,and the University of aliformia at Irvine in USA.
文摘The Jiangmen Underground Neutrino Observatory(JUNO)features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector.Some of JUNO's features make it an excellent location for^8B solar neutrino measurements,such as its low-energy threshold,high energy resolution compared with water Cherenkov detectors,and much larger target mass compared with previous liquid scintillator detectors.In this paper,we present a comprehensive assessment of JUNO's potential for detecting^8B solar neutrinos via the neutrino-electron elastic scattering process.A reduced 2 MeV threshold for the recoil electron energy is found to be achievable,assuming that the intrinsic radioactive background^(238)U and^(232)Th in the liquid scintillator can be controlled to 10^(-17)g/g.With ten years of data acquisition,approximately 60,000 signal and 30,000 background events are expected.This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter,which will shed new light on the inconsistency between the measured electron spectra and the predictions of the standard three-flavor neutrino oscillation framework.IfDelta m^(2)_(21)=4.8times10^(-5);(7.5times10^(-5))eV^(2),JUNO can provide evidence of neutrino oscillation in the Earth at approximately the 3sigma(2sigma)level by measuring the non-zero signal rate variation with respect to the solar zenith angle.Moreover,JUNO can simultaneously measureDelta m^2_(21)using^8B solar neutrinos to a precision of 20% or better,depending on the central value,and to sub-percent precision using reactor antineutrinos.A comparison of these two measurements from the same detector will help understand the current mild inconsistency between the value of Delta m^2_(21)reported by solar neutrino experiments and the KamLAND experiment.